Analytic and Geometric Aspects of Operator Algebras
算子代数的解析和几何方面
基本信息
- 批准号:9706743
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Anderson The principal investigator will continue to develop a geometric spectral theory for n-tuples of self-adjoint operators in finite von Neumann algebras. One goal is to use this new approach to try to develop a coherent theory of the joint spectrum of such operators. Another aim is to use it to deepen our understanding of the structure of such operator algebras as irrational rotation algebras and von Neumann algebras determined by free groups. This project is concerned with the study of certain aspects of operator algebras. These objects have proved fruitful in the study of a wide variety of questions, including problems in such fields as mathematical physics, quantum mechanics and knot theory. The principal investigator and his coworkers have discovered a new way to view certain analytic data (eigenvalues of matrices and their infinite dimensional analogues - spectra of operators). A major goal of the project is to solve a difficult problem (joint spectrum for non-commuting operators), which thus far has withstood repeated vigorous attacks. It is well known that eigenvalues and other spectral data are essential in understanding many real world problems in engineering and science. Thus, it is possible that this project could produce methods for attacking questions in applied mathematics that have not been previously accessible.
本文的主要研究者Anderson将继续发展有限von Neumann代数中n元自伴算子的几何谱理论。一个目标是使用这种新的方法,试图发展一种关于这类算子的联合谱的连贯理论。另一个目的是利用它加深我们对无理旋转代数和由自由群决定的von Neumann代数等算子代数的结构的理解。本课题主要研究算子代数的某些方面。事实证明,这些对象在研究各种各样的问题方面取得了丰硕成果,包括数学物理、量子力学和纽结理论等领域的问题。主要研究人员和他的同事发现了一种查看某些分析数据(矩阵的特征值及其无穷维类似物--算符的谱)的新方法。该项目的一个主要目标是解决一个难题(非通勤运营商的联合频谱),到目前为止,它经受住了反复的猛烈攻击。众所周知,特征值和其他光谱数据对于理解工程和科学中的许多现实世界问题是必不可少的。因此,这个项目可能会产生一些方法来解决应用数学中的问题,而这些问题以前是无法获得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Anderson其他文献
Typologies of alcohol and other drug-related risk among lesbian, gay, bisexual, transgender (trans) and queer adults.
女同性恋、男同性恋、双性恋、变性人和酷儿成年人中酒精和其他毒品相关风险的类型。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Thomas Norman;A. Bourne;Natalie Amos;Jennifer Power;Joel Anderson;Gene Lim;M. Carman;G. Melendez - 通讯作者:
G. Melendez
The Social Cure Properties of Groups Across Cultures: Groups Provide More Support but Have Stronger Norms and Are Less Curative in Relationally Immobile Societies
跨文化群体的社会治愈特性:群体提供更多支持,但规范更强,在相对固定的社会中疗效较差
- DOI:
10.1177/19485506241230847 - 发表时间:
2024 - 期刊:
- 影响因子:5.7
- 作者:
M. Easterbrook;Lusine Grigoryan;Peter B. Smith;Y. Koç;V. M. Lun;Dona Papastylianou;C. Torres;Maria Efremova;Bushra Hassan;Ammar Abbas;Heyla al;Joel Anderson;S. Cross;Gisela Delfino;V. Gamsakhurdia;A. Gavreliuc;Dana Gavreliuc;Pelin Gul;Ceren Gunsoy;A. Hakobjanyan;Siugmin Lay;O. Lopukhova;Ping Hu;D. Sunar;Maria Luisa Mendes Texeira;Doriana Tripodi;Paola Eunice Díaz Rivera;Masaki Yuki;Natsuki Ogusu;C. T. Kwantes;R. Díaz;Lorena Perez Floriano;Trawin Chaleeraktrakoon;Phatthanakit Chobthamkit - 通讯作者:
Phatthanakit Chobthamkit
A Conjecture Concerning the Pure States of B(H) and a Related Theorem
关于B(H)纯态的猜想及相关定理
- DOI:
- 发表时间:
1981 - 期刊:
- 影响因子:0
- 作者:
Joel Anderson - 通讯作者:
Joel Anderson
Determining spatiotemporal trends in hatch and metamorphosis timing of young-of-year southern flounder emParalichthys lethostigma/em) in Texas bays
确定得克萨斯湾(Paralichthys lethostigma)一年生南方鲆幼鱼孵化和变态时间的时空趋势
- DOI:
10.1016/j.fishres.2023.106722 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:2.300
- 作者:
Nicolette S. Beeken;Joel Anderson;Mark Fisher - 通讯作者:
Mark Fisher
Diagnostic transgastric endoscopic peritoneoscopy: extension of the initial human trial for staging of pancreatic head masses
- DOI:
10.1007/s00464-009-0797-4 - 发表时间:
2010-01-07 - 期刊:
- 影响因子:2.700
- 作者:
Peter Nau;Joel Anderson;Benjamin Yuh;Peter Muscarella;E. Christopher Ellison;Lynn Happel;Vimal K. Narula;W. Scott Melvin;Jeffrey W. Hazey - 通讯作者:
Jeffrey W. Hazey
Joel Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Anderson', 18)}}的其他基金
Mathematical Sciences: Analytic and Geometric Aspects of Operator Algebras
数学科学:算子代数的分析和几何方面
- 批准号:
8905287 - 财政年份:1989
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Banach *-Algebras and Algebras of Operators
数学科学:Banach *-代数和算子代数
- 批准号:
8603016 - 财政年份:1986
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2021
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2020
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
- 批准号:
1955175 - 财政年份:2020
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2019
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2018
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
- 批准号:
1207940 - 财政年份:2012
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Geometric and Analytic Aspects of Einstein Metrics
爱因斯坦度量的几何和分析方面
- 批准号:
1205947 - 财政年份:2012
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant
Geometric and analytic aspects of infinite groups
无限群的几何和解析方面
- 批准号:
EP/H027998/1 - 财政年份:2010
- 资助金额:
$ 10.3万 - 项目类别:
Research Grant
Analytic and Geometric Aspects of Ricci Flow
里奇流的解析和几何方面
- 批准号:
0505507 - 财政年份:2005
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




