Analytic and geometric aspects of convexity theory with applications

凸性理论的解析和几何方面及其应用

基本信息

  • 批准号:
    RGPIN-2018-05159
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The omnipresent convexity appears naturally when describing objects of interest in many mathematical related sciences. For instance, the set of quantum states in finite dimensional quantum systems and its subset containing all separable quantum states (i.e., not entangled quantum states) are convex compact sets. Hence, understanding the analytic and/or geometric aspects of convexity theory is in great demand and is prerequisite to understanding convex objects of interest. To this end, my proposed program of research aims to study properties of convexity theory, and to apply tools from convexity theory to attack problems arising in other areas such as mathematical physics, partial differential equations, probability theory and (quantum) information theory. ******One part of the proposed program of research deals with the modern geometric extensions of the Brunn-Minkowski theory and its dual. The emphasis is on understanding the properties of affine invariants (e.g., affine and geominimal surface areas), establishing new affine isoperimetric and isocapacitary inequalities, and solving Minkowski type problems (e.g., the Orlicz-Minkowski problem as well as its dual and/or polar analogues). Several projects are proposed to further explore the connections of the Brunn-Minkowski theory of convex bodies and its dual with partial differential equations, with particular attention paid to geometric inequalities, (polar or dual) Minkowski type problems, and the development of a dual Brunn-Minkowski theory for various variational functionals. ******Another part of the proposed program of research lies in the areas of geometrization of log-concave measures (or functions) and the information theory. The geometrization of log-concave measures can be viewed as the functional analogue of the Brunn-Minkowski theory. I aim to build a framework of the functional Lp and/or Orlicz Brunn-Minkowski theories for log-concave or quasi-concave functions, extend the entropy power inequality to their Lp and/or Orlicz analogues, and discover new geometric inequalities for quantum states. It is expected that these projects help further advance the connections between information theory and the Brunn-Minkowski theory, with particular attention paid to geometric inequalities for quantum states, and the generalizations of the entropy power inequality and Fisher information (in both classical and quantum settings). ******I will continue my commitment to the training of (undergraduate and graduate) students and postdocs. This program of research includes multiple diverse and interdisciplinary research topics, which makes it easier to attract Highly Qualified Personnel (HQP) and helps produce knowledgeable mathematicians of next generation.
在许多与数学相关的科学中,描述感兴趣的对象时,无所不在的凸性自然出现。例如,有限维量子系统中的量子态集合及其包含所有可分离量子态(即非纠缠量子态)的子集是凸紧集。因此,理解凸理论的解析和/或几何方面是非常必要的,也是理解感兴趣的凸对象的先决条件。为此,我提出的研究计划旨在研究凸性理论的性质,并应用凸性理论的工具来解决数学物理、偏微分方程、概率论和(量子)信息论等其他领域出现的问题。******研究计划的一部分涉及布伦-闵可夫斯基理论及其对偶的现代几何扩展。重点是理解仿射不变量的性质(例如,仿射和极小表面积),建立新的仿射等周和等容量不等式,并解决Minkowski型问题(例如,Orlicz-Minkowski问题及其对偶和/或极性类似问题)。为了进一步探讨凸体的Brunn-Minkowski理论及其对偶与偏微分方程的联系,提出了几个项目,特别关注几何不等式,(极或对偶)Minkowski型问题,以及各种变分泛函的对偶Brunn-Minkowski理论的发展。******提出的研究计划的另一部分在于对数凹测度(或函数)和信息论的几何化领域。对数凹测度的几何化可以看作是布伦-闵可夫斯基理论的泛函类比。我的目标是为对数凹或准凹函数建立一个泛函Lp和/或Orlicz Brunn-Minkowski理论的框架,将熵幂不等式扩展到它们的Lp和/或Orlicz类似物,并发现量子态的新的几何不等式。预计这些项目有助于进一步推进信息论和布伦-闵可夫斯基理论之间的联系,特别关注量子态的几何不等式,以及熵幂不等式和费舍尔信息的推广(在经典和量子设置中)。******我将继续致力于培养(本科生和研究生)学生和博士后。该计划的研究包括多个多元化和跨学科的研究课题,这使得它更容易吸引高素质人才(HQP),并帮助培养知识渊博的下一代数学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ye, Deping其他文献

On the Bures volume of separable quantum states
Phase transitions for random states and a semicircle law for the partial transpose
  • DOI:
    10.1103/physreva.85.030302
  • 发表时间:
    2012-03-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Aubrun, Guillaume;Szarek, Stanislaw J.;Ye, Deping
  • 通讯作者:
    Ye, Deping

Ye, Deping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ye, Deping', 18)}}的其他基金

Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
  • 批准号:
    1955175
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and Analytic Aspects of Einstein Metrics
爱因斯坦度量的几何和分析方面
  • 批准号:
    1205947
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
  • 批准号:
    1207940
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Geometric and analytic aspects of infinite groups
无限群的几何和解析方面
  • 批准号:
    EP/H027998/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Analytic and Geometric Aspects of Ricci Flow
里奇流的解析和几何方面
  • 批准号:
    0505507
  • 财政年份:
    2005
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Analytic and Geometric Aspects of Convergence Groups
协作研究:收敛群的解析和几何方面
  • 批准号:
    0305634
  • 财政年份:
    2003
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了