Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
基本信息
- 批准号:RGPIN-2018-05159
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The omnipresent convexity appears naturally when describing objects of interest in many mathematical related sciences. For instance, the set of quantum states in finite dimensional quantum systems and its subset containing all separable quantum states (i.e., not entangled quantum states) are convex compact sets. Hence, understanding the analytic and/or geometric aspects of convexity theory is in great demand and is prerequisite to understanding convex objects of interest. To this end, my proposed program of research aims to study properties of convexity theory, and to apply tools from convexity theory to attack problems arising in other areas such as mathematical physics, partial differential equations, probability theory and (quantum) information theory.
One part of the proposed program of research deals with the modern geometric extensions of the Brunn-Minkowski theory and its dual. The emphasis is on understanding the properties of affine invariants (e.g., affine and geominimal surface areas), establishing new affine isoperimetric and isocapacitary inequalities, and solving Minkowski type problems (e.g., the Orlicz-Minkowski problem as well as its dual and/or polar analogues). Several projects are proposed to further explore the connections of the Brunn-Minkowski theory of convex bodies and its dual with partial differential equations, with particular attention paid to geometric inequalities, (polar or dual) Minkowski type problems, and the development of a dual Brunn-Minkowski theory for various variational functionals.
Another part of the proposed program of research lies in the areas of geometrization of log-concave measures (or functions) and the information theory. The geometrization of log-concave measures can be viewed as the functional analogue of the Brunn-Minkowski theory. I aim to build a framework of the functional Lp and/or Orlicz Brunn-Minkowski theories for log-concave or quasi-concave functions, extend the entropy power inequality to their Lp and/or Orlicz analogues, and discover new geometric inequalities for quantum states. It is expected that these projects help further advance the connections between information theory and the Brunn-Minkowski theory, with particular attention paid to geometric inequalities for quantum states, and the generalizations of the entropy power inequality and Fisher information (in both classical and quantum settings).
I will continue my commitment to the training of (undergraduate and graduate) students and postdocs. This program of research includes multiple diverse and interdisciplinary research topics, which makes it easier to attract Highly Qualified Personnel (HQP) and helps produce knowledgeable mathematicians of next generation.
在许多数学相关的科学中,当描述感兴趣的对象时,无处不在的凸性自然地出现。例如,有限维量子系统中的量子态集合及其包含所有可分离量子态的子集(即,非纠缠量子态)是凸紧集。因此,理解凸性理论的分析和/或几何方面是非常必要的,并且是理解感兴趣的凸对象的先决条件。为此,我提出的研究计划旨在研究凸性理论的性质,并将凸性理论的工具应用于其他领域,如数学物理,偏微分方程,概率论和(量子)信息理论中出现的问题。
其中一部分拟议的研究计划涉及现代几何扩展的布伦-闵可夫斯基理论及其对偶。重点是理解仿射不变量的性质(例如,仿射和几何最小表面积),建立新的仿射等周和等容不等式,以及求解Minkowski型问题(例如,Orlicz-Minkowski问题及其对偶和/或极性类似物)。提出了几个项目,以进一步探索凸体的Brunn-Minkowski理论及其对偶与偏微分方程的联系,特别注意几何不等式,(极或对偶)Minkowski型问题,以及各种变分泛函的对偶Brunn-Minkowski理论的发展。
另一部分的拟议计划的研究在于领域的几何化的对数凹措施(或功能)和信息理论。 对数凹测度的几何化可以被看作是Brunn-Minkowski理论的函数模拟。我的目标是建立一个框架的功能LP和/或Orlicz Brunn-Minkowski理论的对数凹或准凹函数,扩展熵功率不等式到他们的LP和/或Orlicz类似物,并发现新的量子态的几何不等式。预计这些项目将有助于进一步推进信息论和Brunn-Minkowski理论之间的联系,特别关注量子态的几何不等式,以及熵功率不等式和Fisher信息(在经典和量子环境中)的推广。
我将继续致力于培养(本科生和研究生)学生和博士后。该研究计划包括多个多样化和跨学科的研究课题,这使得更容易吸引高素质人才(HQP),并有助于培养下一代知识渊博的数学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye, Deping其他文献
On the Bures volume of separable quantum states
- DOI:
10.1063/1.3187216 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:1.3
- 作者:
Ye, Deping - 通讯作者:
Ye, Deping
Phase transitions for random states and a semicircle law for the partial transpose
- DOI:
10.1103/physreva.85.030302 - 发表时间:
2012-03-12 - 期刊:
- 影响因子:2.9
- 作者:
Aubrun, Guillaume;Szarek, Stanislaw J.;Ye, Deping - 通讯作者:
Ye, Deping
Ye, Deping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye, Deping', 18)}}的其他基金
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多学科交叉下的彩绘造像文物数字化复原及保护技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
非自治迭代函数系统拓扑熵与拓扑压的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
有限型拟凸域相关问题的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
海森型方程解的几何性质和刘维尔型定理
- 批准号:RG25A010001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
几何深度学习引导的全柔性分子对接方法研究
- 批准号:MS25B030050
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
共价有机框架几何异构光催化氧还原现场高效制备清洁过氧化氢
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
变分次凸性及其应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
凸几何中赋值理论、运动公式研究及应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
尾矿坝三维建模及模型数据精确化研究
- 批准号:2025JJ70401
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
- 批准号:
1955175 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric and Analytic Aspects of Einstein Metrics
爱因斯坦度量的几何和分析方面
- 批准号:
1205947 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
A Conference on Partial Differential Equations - Analytic and Geometric Aspects
偏微分方程会议 - 解析和几何方面
- 批准号:
1207940 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Geometric and analytic aspects of infinite groups
无限群的几何和解析方面
- 批准号:
EP/H027998/1 - 财政年份:2010
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Analytic and Geometric Aspects of Ricci Flow
里奇流的解析和几何方面
- 批准号:
0505507 - 财政年份:2005
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Collaborative Research: Analytic and Geometric Aspects of Convergence Groups
协作研究:收敛群的解析和几何方面
- 批准号:
0305634 - 财政年份:2003
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant