Numerical Methods in Large-Scale Computation
大规模计算中的数值方法
基本信息
- 批准号:9706866
- 负责人:
- 金额:$ 48.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-15 至 2001-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706866 McCormick The main thrust of the proposed research is the development of efficient numerical techniques for simulation of a wide variety of physical processes. Important applications include aerodynamics, meteorology, elasticity, electromagnetics, porous media, and particle transport. The general goal is to develop accurate discretization methods and fast algebraic solvers for the partial differential equations that govern these and other applications. The research topics include: multilevel first-order system least squares, which involves reformulation of partial differential equations as well-posed minimization principles to allow for robust and efficient solution methods; porous media problems, which will be treated by Eulerian-Lagrangian localized adjoint methods that have been successful for such multiparty and reactive flows; transport phenomena, which will be simulated using efficient and robust least-squares methods for the three-dimensional Boltzmann transport equations; and iterative methods, which is aimed at developing effective algebraic solvers for the equations that arise in many applications. The focus of this project is research in the field of computational mathematics. The purpose is to improve our understanding of the mathematics behind computer simulation of complex physical phenomena. Such simulations are key to the study and control of many important processes, including groundwater flow, global change, energy production, and material science. One of the challenges in such simulations is the development of improved mathematical methods for solving the equations that arise in these models. The basic aim of this research is dramatic improvement in our ability to model increasingly more complicated and sophisticated processes with much greater accuracy and efficiency. This will pave the way for simulations that can provide scientists, engineers, and policy-makers with much more powerful tools to understand and improve our industry, science, and environm ent.
小行星9706866 拟议的研究的主要推力是开发有效的数值技术,用于模拟各种各样的物理过程。重要的应用包括空气动力学、气象学、弹性、电磁学、多孔介质和粒子输运。 总的目标是开发精确的离散化方法和快速代数求解偏微分方程,这些和其他应用。 研究课题包括:多级一阶系统最小二乘法,其中涉及重新制定的偏微分方程作为适定的最小化原则,以允许强大的和有效的解决方法;多孔介质问题,这将是由欧拉拉格朗日本地化的伴随方法,已成功地为这样的多方和反应流处理;输运现象,将使用三维玻尔兹曼输运方程的高效和稳健的最小二乘法进行模拟;和迭代方法,其目的是为许多应用中出现的方程开发有效的代数求解器。 该项目的重点是计算数学领域的研究。 其目的是提高我们对计算机模拟复杂物理现象背后的数学的理解。 这种模拟是研究和控制许多重要过程的关键,包括地下水流、全球变化、能源生产和材料科学。 这种模拟的挑战之一是开发改进的数学方法来求解这些模型中出现的方程。 这项研究的基本目的是显着提高我们的能力,以更高的准确性和效率来模拟越来越复杂和复杂的过程。 这将为模拟铺平道路,为科学家、工程师和政策制定者提供更强大的工具,以了解和改善我们的行业、科学和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve McCormick其他文献
A Comparison Of Methods For Identification And Antifungal Susceptibility Testing Of Candida Isolates: Category: Lesson in Microbiology & Infection Control
- DOI:
10.1016/j.jinf.2011.04.106 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
David McGuire;Elizabeth Kilgour;Irene Winning;Steve McCormick;Donald Inverarity - 通讯作者:
Donald Inverarity
The impact upon mortality due to sepsis following the introduction of a restrictive empirical antibiotic policy in NHS Lanarkshire: Category: Lesson in Microbiology & Infection Control
- DOI:
10.1016/j.jinf.2011.04.048 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Beth White;Donald Inverarity;Steve McCormick;Stephanie Dundas - 通讯作者:
Stephanie Dundas
Breaking the matrix speed limit
突破矩阵速度限制
- DOI:
10.1038/337205a0 - 发表时间:
1989-01-19 - 期刊:
- 影响因子:48.500
- 作者:
Steve McCormick - 通讯作者:
Steve McCormick
Molecular cloning, sequence analysis, and salinity regulation of gill 11β-hydrozysteroid dehydrogenase type 3 in salmonids
鲑鱼鳃11β-羟基类固醇脱氢酶3型的分子克隆、序列分析和盐度调节
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Makoto Kusakabe;Steve McCormick;Yoshio Takei and Graham Young - 通讯作者:
Yoshio Takei and Graham Young
Roles in multiple types of 11β-hydroxysteroid dehydrogenases for osmoregulation in rainbow trout gill?
多种 11β-羟基类固醇脱氢酶在虹鳟鱼鳃渗透压调节中的作用?
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Makoto Kusakabe;Steve McCormick;Yoshio Takei and Graham Young - 通讯作者:
Yoshio Takei and Graham Young
Steve McCormick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve McCormick', 18)}}的其他基金
Copper Mountain Conference on Multigrid Methods
铜山多重网格方法会议
- 批准号:
1459887 - 财政年份:2015
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Copper Mountain Conferences on Iterative Methods
铜山迭代方法会议
- 批准号:
1347684 - 财政年份:2014
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Least-Squares Methods for PIV Analysis
合作研究:PIV 分析的增强型最小二乘法
- 批准号:
0811275 - 财政年份:2008
- 资助金额:
$ 48.24万 - 项目类别:
Continuing Grant
Collaborative Research: Multigrid QCD at the Petascale
合作研究:千万亿级多重网格 QCD
- 批准号:
0749317 - 财政年份:2007
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
First-Order System Least Squares (FOSLS) for Partial Differential Equations
偏微分方程的一阶系统最小二乘法 (FOSLS)
- 批准号:
0084438 - 财政年份:2000
- 资助金额:
$ 48.24万 - 项目类别:
Continuing Grant
Ninth Copper Mountain Conference On Multigrid Methods
第九届铜山多重网格方法会议
- 批准号:
9816592 - 财政年份:1998
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Eighth Copper Mountain Conference on Multigrid Methods
第八届铜山多重网格方法会议
- 批准号:
9614997 - 财政年份:1997
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Mathematical Sciences: Seventh Copper Mountain Conference on Multigrid Methods
数学科学:第七届铜山多重网格方法会议
- 批准号:
9521625 - 财政年份:1995
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
U.S.-France (INRIA) Cooperative Research: Domain Decomposition and Multilevel Techniques in Large-Scale Parallel Computing
美法(INRIA)合作研究:大规模并行计算中的领域分解和多级技术
- 批准号:
9310529 - 财政年份:1994
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Mathematical Sciences: Colorado Conference on Iterative Methods
数学科学:科罗拉多迭代方法会议
- 批准号:
9319938 - 财政年份:1994
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast numerical methods for solving large-scale matrix equations
求解大规模矩阵方程的快速数值方法
- 批准号:
23K19951 - 财政年份:2023
- 资助金额:
$ 48.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2021
- 资助金额:
$ 48.24万 - 项目类别:
Discovery Grants Program - Individual
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2020
- 资助金额:
$ 48.24万 - 项目类别:
Discovery Grants Program - Individual
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
- 批准号:
20K11698 - 财政年份:2020
- 资助金额:
$ 48.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2019
- 资助金额:
$ 48.24万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Fluid-Structure Interaction Problems with Large Displacements
大位移流固耦合问题的数值方法
- 批准号:
1912908 - 财政年份:2019
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Improving Numerical Methods for Large Eigenvalue Problems
改进大型特征值问题的数值方法
- 批准号:
1913364 - 财政年份:2019
- 资助金额:
$ 48.24万 - 项目类别:
Standard Grant
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2018
- 资助金额:
$ 48.24万 - 项目类别:
Discovery Grants Program - Individual
A study on numerical solution methods with stable and high accuracy for large-scale linear systems
大型线性系统稳定高精度数值求解方法研究
- 批准号:
18K11342 - 财政年份:2018
- 资助金额:
$ 48.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Acceleration of the numerical solutions of structural optimization: Development of optimization methods for large-scale structures
结构优化数值求解的加速:大型结构优化方法的开发
- 批准号:
17K06633 - 财政年份:2017
- 资助金额:
$ 48.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




