Lebesgue Space Estimates for Solutions to Hyperbolic Equations
双曲方程解的勒贝格空间估计
基本信息
- 批准号:9706840
- 负责人:
- 金额:$ 6.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706840 Beals The investigation involves the study of certain properties of solutions to strictly hyperbolic partial differential equations ("waves"). New qize and smoothness estimates in the linear case will be derived, in order to analyze the properties of solutions to nonlinear problems. Estimates of time decay for appropriate measures of the size of a solution will be obtained. Results for the classical wave equation on a spatial domain which is exterior to a convex obstacle will be extended to handle more general natural conditions at the boundary of the obstacle. The key estimates correspond to finding the best possible time decay subject to the weakest size and smoothness restrictions on the data. More general obstacles, for which certain types of decay estimates are known but for which explicit representations of approximations to solutions are absent, will also be treated. Analogous full-space problems (no obstacles) will be analyzed. The primary questions in these cases involve higher order equations or systems, and the effects of interactions with changes in the properties of the medium in which the waves are propagating. Nonsmooth perturbations in the medium are one source of problems, including questions about the minimal regularity needed for the perturbing potential. Propagation in inhomogeneous media (for example, nonconstant wave speeds) where bounds involving explicit time estimates are relatively sparse, will also be considered. (The classical bounds involve those which measure size in terms of the classical energy, which will not typically exhibit decay in time.) The optimal time estimates under the best possible conditions on the size of the data measured in terms of other natural spaces will be considered, in model problems and in general. Waves have been studied classically in terms of a size quantity like energy, which is typically conserved or behaves in a fashion which is easy to understand. In order to go beyond the simpl est mathematical approximations to understand the small- and large-scale properties of true physical waves, other means of measuring the wave size must be used. Only the simplest model problems have been fully understood in this context in the past - those for which the large-scale behavior is merely a simple magnification of the small-scale behavior (such as unperturbed waves in free space). In true physical problems, waves encounter obstacles and are reflected or absorbed; they travel in media which are not uniform; they interact with themselves and with the media in which they propagate. The size behavior of such waves, and in particular the decay of their amplitudes in time, will be analyzed, in order to understand what information can be deduced about the wave source from measurements of such size quantities made far away (or long after the wave is generated).
9706840 Beals本研究涉及对严格双曲型偏微分方程解的某些性质的研究。为了分析非线性问题解的性质,我们将在线性情形下导出新的Qize和光滑性估计。对于溶液大小的适当度量,将获得时间衰减的估计。对于凸形障碍物外的空间域上的经典波动方程,其结果将被推广到处理更一般的障碍物边界上的自然条件。关键估计对应于在数据的最弱大小和光滑度限制下找到可能的最佳时间衰减。也将讨论更一般的障碍,对于这些障碍,某些类型的衰减估计是已知的,但对于这些障碍,其解的近似没有显式表示。将分析类似的全空间问题(无障碍)。这些情况下的主要问题涉及高阶方程或系统,以及与波在其中传播的介质性质变化的相互作用的影响。介质中的非光滑扰动是问题的一个来源,包括关于微扰势所需的最小正则性的问题。在包含显式时间估计的边界相对稀疏的非均匀介质(例如,非恒定波速)中的传播也将被考虑。(经典界限涉及那些用经典能量来衡量大小的界限,经典能量通常不会表现出时间衰变。)在模型问题和一般情况下,将考虑以其他自然空间衡量的数据大小的最佳可能条件下的最佳时间估计。波的大小,如能量,通常是守恒的,或者以一种容易理解的方式来研究波。为了超越最简单的数学近似来理解真实物理波的小尺度和大尺度特性,必须使用其他测量波大小的方法。在过去,只有最简单的模型问题在这种背景下才被完全理解--对于那些大尺度行为仅仅是小尺度行为的简单放大的那些问题(例如自由空间中的无扰波)。在真正的物理问题中,波遇到障碍并被反射或吸收;它们在不均匀的介质中传播;它们与自己以及它们传播的介质相互作用。将分析这种波的大小行为,特别是它们的幅度在时间上的衰减,以便理解从远距离(或在波产生后很长一段时间)对这种大小的测量可以推断出关于波源的哪些信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
R. Michael Beals其他文献
R. Michael Beals的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('R. Michael Beals', 18)}}的其他基金
Extending and Renewing the Education of Mathematicians (EREM)
扩展和更新数学家教育(EREM)
- 批准号:
9819940 - 财政年份:1999
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Size and Regularity Estimates for Solutions to Hyperbolic Equations
数学科学:双曲方程解的大小和规律性估计
- 批准号:
9401819 - 财政年份:1994
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Estimates for Linear and Nonlinear Wave Equations
数学科学:线性和非线性波动方程的估计
- 批准号:
9104506 - 财政年份:1991
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence and Regularity of Solutionsto Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性和规律性
- 批准号:
8902136 - 财政年份:1989
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Estimates for Solutions ofNonlinear Strictly Hyperbolic Equations
数学科学:非线性严格双曲方程解的正则估计
- 批准号:
8603158 - 财政年份:1986
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Microlocal Propagation of Smoothness And Development of Singularities in Solutions of Nonlinear Hyperbolic Equations
数学科学:非线性双曲方程解中光滑性的微局域传播和奇点的展开
- 批准号:
8201281 - 财政年份:1982
- 资助金额:
$ 6.55万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8017154 - 财政年份:1980
- 资助金额:
$ 6.55万 - 项目类别:
Fellowship Award
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 6.55万 - 项目类别:
Studentship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Cooperative Agreement
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Fellowship Award
Thermal engineering in semiconductor heterojunction for space transducers
空间换能器半导体异质结的热工程
- 批准号:
DP240102230 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Discovery Projects
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
- 批准号:
DP240102399 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Discovery Projects
Co-evolution of supermassive black holes and galaxies with the James Webb Space Telescope
超大质量黑洞和星系与詹姆斯·韦伯太空望远镜的共同演化
- 批准号:
23K22533 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Research Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Research Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 6.55万 - 项目类别:
Research Grant