New Mathematics and Innovative Numerical Methods for the Valuation of Options
用于期权估值的新数学和创新数值方法
基本信息
- 批准号:9706985
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706985 Junping Wang Five important aspects on the valuation of options will be addressed. First, we propose a new mathematical formulation for the free boundary value problem. Second, we investigate the uniqueness and existence of the solution. Third, we use finite element methods to compute the option price based on our proposed formulas. Fourth, we provide iterative schemes to effectively solve the system of nonlinear algebraic equations arising from the finite element method. Fifth, we will develop a code package that is computationally efficient and robust. The proposed new mathematics features a weak variational approach to the time value of the option by using a Hilbert space method. The weak form for the valuation of options opens a door to the use of finite element methods together with grid local refinement in the approximation of the option pricing function and the free boundary by efficient numerical techniques such as domain decomposition and multigrid methods. In particular, this approach provides a very promising future for the computation of financial products involving multi-assets and securities, as the computational domain will be of multi-dimension in those applications. Financial derivatives are a major and fast growing area in modern financial markets. For example, according to the Swaps Monitor, the size of swaps alone, a particular kind of derivatives, was approximately $9 trillion in 1993,almost the size of the annual gross national income of the United States. The valuation of these derivatives is practically useful, important, and mathematically challenging. Advanced techniques in mathematics have been playing an important role in the understanding and valuation of various derivative securities ever since the first trading of these financial products. With increasing complexity of new and exotic financial products, the demand for new and efficient techniques in mathematics and computation becomes greater type derivatives, but also has far-reaching im pact on derivative valuations in general. The methods can be extended to currency options, interest rate options and exotic options such as Asian options and lookback options which have added difficulties due to the path-dependence of the payoff function. In particular, the methods can yield the value of various bonds based on the new and empirically relevant interest rate diffusions, resulting in the value of swaps and various mortgage-backed securities.
小行星9706985 将讨论期权估值的五个重要方面。 首先,我们提出了一个新的自由边值问题的数学表述。 其次,我们研究了解的唯一性和存在性。 第三,我们使用有限元方法来计算期权价格的基础上,我们提出的公式。 第四,我们提供了迭代方案,有效地解决系统的非线性代数方程所产生的有限元方法。 第五,我们将开发一个计算效率高且健壮的代码包。 建议的新数学的特点是弱变分方法的时间值的选择,通过使用希尔伯特空间方法。 弱形式的期权估值打开了一扇大门,使用有限元方法与网格局部细化在近似的期权定价函数和自由边界的有效的数值技术,如区域分解和多重网格方法。 特别是,这种方法提供了一个非常有前途的未来的计算金融产品,涉及多资产和证券,因为计算域将在这些应用中的多维。 金融衍生品是现代金融市场中一个重要且快速发展的领域。 例如,根据互换监测,1993年,仅互换这一特定种类的衍生工具的规模就约为9万亿美元,几乎相当于美国的年国民总收入。 这些衍生品的估值实际上是有用的,重要的,数学上具有挑战性。 自从这些金融产品首次交易以来,数学中的先进技术在理解和评估各种衍生证券方面一直发挥着重要作用。 随着新型金融产品的日益复杂,对新型高效的数学和计算技术的需求成为衍生产品的重要组成部分,同时也对衍生产品的估值产生了深远的影响。 该方法可以扩展到货币期权,利率期权和奇异期权,如亚式期权和回望期权,增加了困难,由于路径依赖的支付函数。特别是,这些方法可以根据新的和经验相关的利率扩散产生各种债券的价值,从而产生掉期和各种抵押贷款支持证券的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junping Wang其他文献
Effects of Heat Stress on Survival of Frankliniella occidentalis (Thysanoptera: Thripidae) and Thrips tabaci (Thysanoptera: Thripidae)
热应激对西花蓟马(缨翅目:蓟马科)和烟蓟马(缨翅目:蓟马科)存活的影响
- DOI:
10.1603/ec14127 - 发表时间:
2014-08 - 期刊:
- 影响因子:2.2
- 作者:
Jianchao Wang;Bin Zhang;Junping Wang;Honggang Li;Sifang Wang;Lijuan Sun;Changying Zheng - 通讯作者:
Changying Zheng
Integrating mobile learning and SPOC‐based flipped classroom to teach a course in water supply and drainage science and engineering
移动学习与SPOC翻转课堂相结合教授《给排水科学与工程》课程
- DOI:
10.1002/cae.22604 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Hui Zhang;Jie Zhang;Junping Wang;Haihan Zhang - 通讯作者:
Haihan Zhang
EMIE-MAP: Large-Scale Road Surface Reconstruction Based on Explicit Mesh and Implicit Encoding
EMIE-MAP:基于显式网格和隐式编码的大规模路面重建
- DOI:
10.48550/arxiv.2403.11789 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenhua Wu;Qi Wang;Guangming Wang;Junping Wang;Tiankun Zhao;Yang Liu;Dongchao Gao;Zhe Liu;Hesheng Wang - 通讯作者:
Hesheng Wang
Multi-residue determination of organophosphorus and organochlorine pesticides in environmental samples using solid-phase extraction with cigarette filter followed by GC/MS
采用香烟滤嘴固相萃取和 GC/MS 技术对环境样品中的有机磷和有机氯农药进行多残留测定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.3
- 作者:
Shuo Wang;Junping Wang;Wen Chen;Junyan Qin;Yunping Yao;Guozhen Fang - 通讯作者:
Guozhen Fang
Assessment of genetic diversity in Australian canola (Brassica napus L.) cultivars using SSR markers
使用 SSR 标记评估澳大利亚油菜品种的遗传多样性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Junping Wang;S. Kaur;N. Cogan;M. Dobrowolski;P. Salisbury;P. Salisbury;W. Burton;R. Baillie;M. Hand;C. Hopkins;J. Forster;Kevin F. Smith;G. Spangenberg - 通讯作者:
G. Spangenberg
Junping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junping Wang', 18)}}的其他基金
US-China Cooperative Research: Efficient Numerical Methods for Partial Differential Equations
中美合作研究:偏微分方程的高效数值方法
- 批准号:
9309286 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
- 批准号:12226506
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
- 批准号:11826405
- 批准年份:2018
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
- 批准号:11726404
- 批准年份:2017
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Frontiers of Mathematics in China
- 批准号:11024802
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:专项基金项目
相似海外基金
Inspiring Science and Mathematics Teachers to Reach Underserved Classrooms by Implementing Innovative, Data-supported Concepts
通过实施创新的、数据支持的概念,激励科学和数学教师进入服务不足的课堂
- 批准号:
2243413 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Preparing Resourceful, Innovative Science and Mathematics Teachers
培养足智多谋、创新的科学和数学教师
- 批准号:
1950269 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Innovative Science, Technology Engineering, and Mathematics Work Force Development Project
创新科学、技术工程和数学劳动力发展项目
- 批准号:
2048821 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge
年轻数学家:在学习环境中拓展创新且有前景的模式,以提升学龄前儿童的数学知识
- 批准号:
1907904 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
A study on the innovative nature of Seki Takakazu's mathematics: centering on his theory of equations
关高一数学创新性研究——以方程论为中心
- 批准号:
19K03609 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted Infusion Project: Innovative Jarvis Undergraduate Mathematics Program (I-JUMP): Embedding Computational and Mathematical Biology into Life STEM
定向输注项目:创新贾维斯本科数学项目(I-JUMP):将计算和数学生物学嵌入生命 STEM
- 批准号:
1912196 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Innovative Science, Technology Engineering, & Mathematics Explore Project
创新科学、技术工程、
- 批准号:
1850302 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Broadening Participation Research Project: Effects of Innovative Mathematics Instruction Methods on Student Attitude, Self-efficacy, Effort and Performance
扩大参与研究项目:创新数学教学方法对学生态度、自我效能、努力和表现的影响
- 批准号:
1818710 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Scaling up an innovative STEAM (Science, Technology, Engineering, Arts, & Mathematics) learning environment through two partnership models with industry and schools
扩大创新的 STEAM(科学、技术、工程、艺术、
- 批准号:
1657438 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Innovative Science Technology Engineering and Mathematics Strategy Project
创新科技工程与数学战略项目
- 批准号:
1512957 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant