The Use of 4-Dimensional Lidar Data to Evaluate Large Eddy Simulations: A Lake ICE Project
使用 4 维激光雷达数据评估大涡模拟:Lake ICE 项目
基本信息
- 批准号:9707165
- 负责人:
- 金额:$ 43.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-12-01 至 2000-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9707165 Eloranta Much of the energy that drives atmospheric circulations is obtained through exchanges of heat, moisture, and momentum with the surface. Lake-effect weather events, where cold air masses are rapidly modified over the Great Lakes, are excellent natural laboratories for studying these exchanges. The Lake-Induced Convection Experiment (Lake-ICE) is a multiple-Principal Investigator project which seeks to use this natural laboratory to determine how boundary layer growth processes are controlled by mesoscale boundary layer convective structures and how the modified boundary layer effects the production of precipitation and the larger scale meteorological conditions. In this research effort, the Principal Investigator will study the four dimensional characteristics of the evolution of the boundary layer near the upwind shore of Lake Michigan. To accomplish this, the Principal Investigator will deploy and operate a Volume Imaging Lidar (VIL) on the west shore of Lake Michigan during the Lake-ICE project. The lidar will observe the growing convective boundary layer over the lake as cold air passes over the warm water. These observations will complement airborne and ground-based radar measurements planned for mid-Lake area and the eastern shore and will be coordinated with other research meteorological measurements. During a typical data session, the VIL will repetitively scan a three-dimensional volume extending to 21 km downwind. These images of aerosol backscatter will record the growth of convection as the air moves downwind. Specifically, the lidar data will be analyzed to provide: 1) the depth of the boundary layer as a function of distance downwind, 2) the wind speed and direction as a function of downwind distance and altitude, 3) the dimensions and aspect rations of the convective plumes, 4) the spatial organization of the convective cells in the convective field, 5) the decorrelation time for convective structures, 6) the d ownwind distance and altitude of first cloud formation. The primary application of the lidar data will be to evaluate numerical models of the boundary layer over the lake. In addition, the Principal Investigators will evaluate the ability of a large eddy simulation to derive an explicit description of the convective field. Successful completion of this research will increase fundamental understanding of the evolution of the lake boundary layer which is crucial to understanding and forecasting the very disruptive lake-effect snow events. ***
小行星9707165 驱动大气环流的大部分能量是通过与地表交换热量、水分和动量获得的。 湖泊效应天气事件,即冷空气团在五大湖上空迅速改变,是研究这些交换的极好的自然实验室。湖诱导对流实验(湖-ICE)是一个多个主要研究者项目,旨在利用这个自然实验室来确定边界层生长过程是如何被中尺度边界层对流结构控制的,以及修改后的边界层如何影响降水的产生和更大尺度的气象条件。 在这项研究工作中,首席研究员将研究密歇根湖逆风海岸附近边界层演变的四维特征。为了实现这一目标,首席研究员将在Lake-ICE项目期间在密歇根湖西海岸部署和操作体积成像激光雷达(VIL)。 当冷空气经过温暖的水面时,激光雷达将观测到湖面上不断增长的对流边界层。 这些观测将补充计划用于中湖区和东海岸的机载和地基雷达测量,并将与其他研究气象测量相协调。 在典型的数据会话期间,VIL将重复扫描延伸到顺风21公里的三维体积。 这些气溶胶后向散射的图像将记录下空气顺风移动时对流的增长。 具体而言,将对激光雷达数据进行分析,以提供:1)作为顺风距离的函数的边界层的深度,2)作为顺风距离和高度的函数的风速和风向,3)对流羽流的尺寸和纵横比,4)对流场中对流单体的空间组织,5)对流结构的去相关时间,(6)第一次云形成的顺风距离和高度。 激光雷达数据的主要应用将是评估湖上边界层的数值模型。 此外,主要研究人员将评估大涡模拟的能力,以获得对流场的明确描述。 这项研究的成功完成将增加对湖泊边界层演变的基本了解,这对于理解和预测非常具有破坏性的湖泊效应雪事件至关重要。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Eloranta其他文献
Edwin Eloranta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Eloranta', 18)}}的其他基金
An extensible framework for the web based distribution of data derived from multiple geophysical data sets.
一个可扩展的框架,用于基于网络分发源自多个地球物理数据集的数据。
- 批准号:
0946359 - 财政年份:2009
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
A Replacement Laser for the Arctic High Spectral Resolution Lidar
北极高光谱分辨率激光雷达的替代激光器
- 批准号:
0856503 - 财政年份:2009
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Development of data products for the University of Wisconsin High Spectral Resolution Lidar
为威斯康星大学高光谱分辨率激光雷达开发数据产品
- 批准号:
0612452 - 财政年份:2007
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
The Design, Fabrication and Testing of Prototype Next-Generation Polar Automatic Weather Stations
下一代极地自动气象站原型的设计、制造和测试
- 批准号:
0085217 - 财政年份:2001
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Long-Term Observations: Development of a High Spectral Resolution Lidar for Long-term Unattended Measurement of Arctic Clouds and Aerosols
长期观测:开发高光谱分辨率激光雷达,用于长期无人值守测量北极云和气溶胶
- 批准号:
9910304 - 财政年份:1999
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
The Measurement of Particle Sizes in Clouds with the University of Wisconsin High Spectral Resolution Lidar
使用威斯康星大学高光谱分辨率激光雷达测量云中的粒径
- 批准号:
9321330 - 财政年份:1995
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Studentship
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Research Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Studentship
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Fellowship
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Discovery Projects














{{item.name}}会员




