Weighted Approximation in the Complex Plane and Iterative Methods, via Potential Theory and Function Theory

基于势论和函数论的复平面加权逼近和迭代方法

基本信息

  • 批准号:
    9707359
  • 负责人:
  • 金额:
    $ 8.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9707359 Richard S. Varga The goal of this proposal is to attack basic problems in polynomial and rational approximation, with varying weights, in the complex plane, by means of potential theoretic techniques. Recently, the proposers have begun fruitful initial investigations in this area, resulting in a number of new research manuscripts, which we consider to be of break-through character. We clearly feel that these initial investigations are so promising as to warrant the submission of this research proposal to the National Science Foundation. But, an important and novel feature of this proposal is that connections, with the efficientsolution of large nonsingular systems of linear equations by iterative methods, are directly associated with this theoretical work in the complex plane by potential theoretic methods. Thus, the proposed research bridges research in complex function theory and numerical analysis, and will have a strong numerical component. Problems arising in large-scale circuit design, oil recovery via petroleum reservoir machanics, and the design of nuclear reactors for generating electrical power, all have the following item in common: the modeling of these physical phenomena leads to massive nonsingular systems of linear equations, whose unknowns can exceed one million. To efficently solve these systems, iterative methods are commonly used. One aim of this proposal is to use tools, from the fields of potential theory anddd complex function theory, to theoretically attack a specific question on how best to iteratively such large systems of equations.
9707359理查德S.瓦尔加 该提案的目标是解决多项式中的基本问题, 有理逼近,具有不同的权重,在复平面上,通过潜在的理论技术。近年来,提出者们在这一领域开始了卓有成效的初步调查,产生了一些新的研究成果 手稿,我们认为这是突破性的。我们清楚地感到,这些初步调查是如此有希望,以保证 将该研究计划提交给国家科学基金会。 但是,这一建议的一个重要和新颖的特点是,连接,用迭代方法的大型非奇异线性方程组的有效解决方案,直接与这一理论工作, 用位势理论方法研究复平面。因此,本文的研究是复变函数理论与数值分析研究的桥梁,具有很强的数值性。 在大规模电路设计中出现的问题,通过石油储层力学采油,以及用于发电的核反应堆的设计 电力,都有以下共同点:建模 这些物理现象导致大量的非奇异线性系统, 方程,其未知数可以超过一百万。为了有效地求解这些方程组,通常使用迭代法。这个建议的一个目的是使用工具,从潜在的理论和dd复函数理论领域,从理论上攻击一个具体的问题,如何最好地迭代 如此庞大的方程组

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Varga其他文献

Richard Varga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Varga', 18)}}的其他基金

US-France Cooperative Research: Polynomials with Concen- tration at Low Degrees and Applications
美法合作研究:低次集中多项式及其应用
  • 批准号:
    8914646
  • 财政年份:
    1990
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis and Computations Related to the Riemann Hypothesis
数学科学:与黎曼猜想相关的分析与计算
  • 批准号:
    8900414
  • 财政年份:
    1989
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
Analysis and Computations Related to the Riemann Hypothesis
黎曼假设相关的分析与计算
  • 批准号:
    8713737
  • 财政年份:
    1987
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
Numerical Solution of Partial Differential Equations and Applications
偏微分方程数值解及其应用
  • 批准号:
    7927144
  • 财政年份:
    1980
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Computer Science and Computer Engineering Research Equipment
计算机科学与计算机工程研究设备
  • 批准号:
    7920412
  • 财政年份:
    1979
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant

相似海外基金

Approximation Theory and Complex Dynamics
逼近理论和复杂动力学
  • 批准号:
    2246876
  • 财政年份:
    2023
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Scalable approximation of complex probability distributions
复杂概率分布的可扩展近似
  • 批准号:
    RGPIN-2022-04420
  • 财政年份:
    2022
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2020
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2019
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
  • 批准号:
    1904332
  • 财政年份:
    2019
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2018
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2017
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation on Riemann surfaces and in infinite dimensions
黎曼曲面和无限维上的复近似
  • 批准号:
    RGPIN-2016-04107
  • 财政年份:
    2016
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Complex approximation theory
复近似理论
  • 批准号:
    9323-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了