Exploiting Structure in Reinforcement Learning Problems

利用强化学习问题中的结构

基本信息

  • 批准号:
    9711753
  • 负责人:
  • 金额:
    $ 22.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-12-01 至 1998-11-30
  • 项目状态:
    已结题

项目摘要

Algorithms for learning by interaction, or reinforcement learning, typically ignore all structure in the environment and consequently tend to scale poorly. The goal of this research is to develop novel, efficient, and theoretically well-founded algorithms and architectures for learning by interaction in structured environments. Three kinds of environmental structure are considered: factorial structure in states and actions, additive structure in payoff functions, and hierarchical structure in states and actions. Such structure is common because many environments are composed from multiple, weakly interacting, components that are often organized hierarchically. The approach consists of exploiting this structure by learning separately for the different components and then compensating in a structure dependent manner for the approximation so introduced. The results of this research will elucidate many different interesting and useful structures common in learning by interaction problems and provide new reinforcement learning algorithms that make it possible to solve significantly larger structured problems than possible with the traditional approach. Possible applications include large-scale, dynamic, resource allocation problems intelecommunications, networking, and scheduling, as well as multi-agent problems from distributed control and artificial intelligence.
用于通过交互进行学习或强化学习的算法通常会忽略模型中的所有结构。 环境,因此往往规模不大。本研究的目标是开发新颖,高效, 和理论上有充分依据的算法和架构,用于在结构化的 环境.考虑了三种环境结构:状态因子结构和 行动,支付函数的加法结构,以及状态和行动的层次结构。等 结构是常见的,因为许多环境是由多个,弱相互作用, 通常按层次结构组织的组件。该方法包括利用这种结构, 分别学习不同的组件,然后以结构相关的方式进行补偿 对于这样引入的近似。这项研究的结果将阐明许多不同的有趣的 和有用的结构共同学习的互动问题,并提供新的强化 学习算法,使其有可能解决比可能的更大的结构化问题 用传统的方法。可能的应用包括大规模、动态、资源分配 智能化,网络和调度问题,以及来自 分布式控制和人工智能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satinder Baveja其他文献

Satinder Baveja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satinder Baveja', 18)}}的其他基金

RI: Small: Combining Reinforcement Learning and Deep Learning Methods to Address High-Dimensional Perception, Partial Observability and Delayed Reward
RI:小:结合强化学习和深度学习方法来解决高维感知、部分可观察性和延迟奖励问题
  • 批准号:
    1526059
  • 财政年份:
    2015
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
RI: Small: Reinforcement Learning with Predictive State Representations
RI:小:具有预测状态表示的强化学习
  • 批准号:
    1319365
  • 财政年份:
    2013
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Continuing Grant
EAGER: On the Optimal Rewards Problem
EAGER:关于最优奖励问题
  • 批准号:
    1148668
  • 财政年份:
    2011
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
SHB: Medium: Collaborative Research: Novel Computational Techniques for Cardiovascular Risk Stratification
SHB:媒介:协作研究:心血管风险分层的新颖计算技术
  • 批准号:
    1064948
  • 财政年份:
    2011
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
RI: Medium: Building Flexible, Robust, and Autonomous Agents
RI:中:构建灵活、稳健和自治的代理
  • 批准号:
    0905146
  • 财政年份:
    2009
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Standard Grant
Flexible State Representations in Reinforcement Learning
强化学习中灵活的状态表示
  • 批准号:
    0413004
  • 财政年份:
    2005
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Intrinsically Motivated Learning in Artificial Agents
协作研究:人工智能体的内在动机学习
  • 批准号:
    0432027
  • 财政年份:
    2004
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Continuing Grant
A reinforcement learning approach for de novo metabolite structure prediction from mass spectral data
根据质谱数据从头预测代谢物结构的强化学习方法
  • 批准号:
    559158-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Structural Reinforcement Method for Irregular Timber Frame Structure Using 3D Measurement and AM Technologies
利用 3D 测量和增材制造技术开发不规则木框架结构的结构加固方法
  • 批准号:
    21K18762
  • 财政年份:
    2021
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A reinforcement learning approach for de novo metabolite structure prediction from mass spectral data
根据质谱数据从头预测代谢物结构的强化学习方法
  • 批准号:
    559158-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Morphing-wing-structure control based on lift load monitoring by integrating optical fiber sensing and deep reinforcement learning
集成光纤传感和深度强化学习的基于升力载荷监测的变形机翼结构控制
  • 批准号:
    19K04850
  • 财政年份:
    2019
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reinforcement of Iron Rust by Cellulose nanofibers and Application for Repair paint of Deteriorated structure
纤维素纳米纤维增强铁锈及其在劣化结构修补漆中的应用
  • 批准号:
    17K06838
  • 财政年份:
    2017
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagnosis and reinforcement of network structure by multi-dimensional optical sensors
多维光学传感器的网络结构诊断与加固
  • 批准号:
    16KT0105
  • 财政年份:
    2016
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scalable Autonomous Reinforcement Learning - From scratch to less and less structure
可扩展的自主强化学习——从头开始到越来越少的结构
  • 批准号:
    260194412
  • 财政年份:
    2014
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Priority Programmes
Reinforcement of cooling structure of high temperature superconducting magnets using built-in oscillation heat pipes
利用内置振荡热管强化高温超导磁体的冷却结构
  • 批准号:
    25289343
  • 财政年份:
    2013
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative evaluation of the effects of shear reinforcement in flat-plate structure
平板结构抗剪加固效果的定量评价
  • 批准号:
    22360225
  • 财政年份:
    2010
  • 资助金额:
    $ 22.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了