SHB: Medium: Collaborative Research: Novel Computational Techniques for Cardiovascular Risk Stratification
SHB:媒介:协作研究:心血管风险分层的新颖计算技术
基本信息
- 批准号:1064948
- 负责人:
- 金额:$ 56.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project assesses patient cardiovascular risk and matches patients to the treatments most likely to be effective. The project addresses this problem through sophisticated computational methods that identify new markers of disease, improve the ability to measure both new and existing markers, and construct personalized models that can provide highly accurate assessments of individual risk. The core focus of the research addresses the poor performance of existing tools for cardiovascular decision support through advanced methods at the intersection of machine learning, data mining, signal processing, and applied algorithms; with the research guided by knowledge of cardiac pathophysiology.This project impacts patient care for a disease that causes roughly one death every 38 seconds in the United States and imposes a burden of over half a trillion dollars in the U. S. each year. More generally, many of the ideas explored here (e.g., personalization of risk models) extends to a wide variety of other disorders in a straightforward manner and leads to wide improvements in outcomes while controlling costs. The research also strengthens interdisciplinary research in EECs and medicine throughout the computer science research community.
该项目评估患者的心血管风险,并将患者与最有可能有效的治疗相匹配。该项目通过复杂的计算方法解决这个问题,这些方法识别新的疾病标志物,提高衡量新的和现有标志物的能力,并构建能够提供高度准确的个人风险评估的个性化模型。这项研究的核心重点是通过机器学习、数据挖掘、信号处理和应用算法的交叉路口的先进方法,解决现有心血管决策支持工具表现不佳的问题,并在心脏病理生理学知识的指导下进行研究。该项目影响一种疾病的患者护理,在美国,大约每38秒就有一人死亡,每年在美国造成超过5000亿美元的负担。更广泛地说,这里探讨的许多想法(例如,风险模型的个性化)以直截了当的方式扩展到各种其他障碍,并在控制成本的同时导致结果的广泛改善。这项研究还加强了整个计算机科学研究界在EECS和医学方面的跨学科研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Satinder Baveja其他文献
Satinder Baveja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Satinder Baveja', 18)}}的其他基金
RI: Small: Combining Reinforcement Learning and Deep Learning Methods to Address High-Dimensional Perception, Partial Observability and Delayed Reward
RI:小:结合强化学习和深度学习方法来解决高维感知、部分可观察性和延迟奖励问题
- 批准号:
1526059 - 财政年份:2015
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
RI: Small: Reinforcement Learning with Predictive State Representations
RI:小:具有预测状态表示的强化学习
- 批准号:
1319365 - 财政年份:2013
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
EAGER: On the Optimal Rewards Problem
EAGER:关于最优奖励问题
- 批准号:
1148668 - 财政年份:2011
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
RI: Medium: Building Flexible, Robust, and Autonomous Agents
RI:中:构建灵活、稳健和自治的代理
- 批准号:
0905146 - 财政年份:2009
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Flexible State Representations in Reinforcement Learning
强化学习中灵活的状态表示
- 批准号:
0413004 - 财政年份:2005
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
Collaborative Research: Intrinsically Motivated Learning in Artificial Agents
协作研究:人工智能体的内在动机学习
- 批准号:
0432027 - 财政年份:2004
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
Exploiting Structure in Reinforcement Learning Problems
利用强化学习问题中的结构
- 批准号:
9711753 - 财政年份:1997
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Continuing Grant