RI: Medium: Building Flexible, Robust, and Autonomous Agents

RI:中:构建灵活、稳健和自治的代理

基本信息

项目摘要

This project is developing computational agents that operate for extended periods of time in rich and dynamic environments, and achieve mastery of many aspects of their environments without task-specific programming. To accomplish these goals, research is exploring a space of cognitive architectures that incorporate four fundamental features of real neural circuitry: (1) reinforcing behaviors that lead to intrinsic rewards, (2) executing and learning over mental, as well as, motor actions, (3) extracting regularities in mental representations, whether derived from perception or cognitive operations, and (4) continuously encoding and retrieving episodic memories of past events. A software framework called Storm facilitates this exploration by enabling the integration of independent functional subsystems, allowing researchers to easily plug in and remove different subsystems in order to assess their impact on the overall behavior of the system. Cognitive architectures are being tested by exposing them to a wide variety of novel environments with unpredictable (and non-repeatable) extrinsic rewards, but in which many actions could lead to intrinsic rewards (e.g., surprise). To assess flexibility, an automated environment generator exposes agents to environments that are unknown in advance to the artificial agent or human researcher. To assess robustness, cognitive systems are being exposed to many variants of the same environment to ensure that the systems can learn from past experience and generalize when appropriate. And to assess autonomy, systems' must operate effectively for extended periods of time in a dynamic environment. In the longer term, flexible and robust cognitive architectures being devloped under this research will have application as the 'brains' of robotic and software systems in emergency, miltary, and a wide variety of other societal and service realms. This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
该项目正在开发在丰富且动态的环境中长时间运行的计算代理,并在无需特定于任务的编程的情况下掌握其环境的许多方面。为了实现这些目标,研究人员正在探索一个认知架构的空间,其中包含真实的神经回路的四个基本特征:(1)强化导致内在奖励的行为,(2)执行和学习心理以及运动动作,(3)提取心理表征中的特征,无论是来自感知还是认知操作,(4)持续编码和提取过去事件的情景记忆。一个名为Storm的软件框架通过集成独立的功能子系统来促进这种探索,允许研究人员轻松插入和删除不同的子系统,以评估它们对系统整体行为的影响。认知架构正在通过将其暴露于各种各样的具有不可预测(和不可重复)的外在奖励的新环境中来进行测试,但其中许多行为可能导致内在奖励(例如,惊喜)。为了评估灵活性,自动化环境生成器将代理暴露在人工代理或人类研究人员事先未知的环境中。为了评估鲁棒性,认知系统被暴露在同一环境的许多变体中,以确保系统可以从过去的经验中学习,并在适当的时候进行概括。为了评估自主性,系统必须在动态环境中有效地运行很长一段时间。从长远来看,在这项研究下开发的灵活和强大的认知架构将作为机器人和软件系统的“大脑”应用于紧急情况,军事和各种其他社会和服务领域。该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satinder Baveja其他文献

Satinder Baveja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satinder Baveja', 18)}}的其他基金

RI: Small: Combining Reinforcement Learning and Deep Learning Methods to Address High-Dimensional Perception, Partial Observability and Delayed Reward
RI:小:结合强化学习和深度学习方法来解决高维感知、部分可观察性和延迟奖励问题
  • 批准号:
    1526059
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RI: Small: Reinforcement Learning with Predictive State Representations
RI:小:具有预测状态表示的强化学习
  • 批准号:
    1319365
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
EAGER: On the Optimal Rewards Problem
EAGER:关于最优奖励问题
  • 批准号:
    1148668
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHB: Medium: Collaborative Research: Novel Computational Techniques for Cardiovascular Risk Stratification
SHB:媒介:协作研究:心血管风险分层的新颖计算技术
  • 批准号:
    1064948
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Flexible State Representations in Reinforcement Learning
强化学习中灵活的状态表示
  • 批准号:
    0413004
  • 财政年份:
    2005
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: Intrinsically Motivated Learning in Artificial Agents
协作研究:人工智能体的内在动机学习
  • 批准号:
    0432027
  • 财政年份:
    2004
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Exploiting Structure in Reinforcement Learning Problems
利用强化学习问题中的结构
  • 批准号:
    9711753
  • 财政年份:
    1997
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似海外基金

CPS: Medium: Bio-socially Adaptive Control of Robotics-Augmented Building-Human Systems for Infection Prevention by Cybernation of Pathogen Transmission
CPS:中:机器人增强建筑人类系统的生物社会自适应控制,通过病原体传播的网络来预防感染
  • 批准号:
    2038967
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: S2Guard: Building Security and Safety in Autonomous Vehicles via Multi-Layer Protection
CPS:中:S2Guard:通过多层保护构建自动驾驶车辆的安全保障
  • 批准号:
    1837519
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Cooperative Agreement
Research on method of building "awareness" capability for improving labor productivity in small and medium-sized enterprises
中小企业提高劳动生产率“意识”能力建设方法研究
  • 批准号:
    19K03062
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Building Information, Inhabitant, Interaction and Intelligent Integrated Modeling (BI5M)
CPS:中:协作研究:建筑信息、居民、交互和智能集成建模(BI5M)
  • 批准号:
    1837022
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
  • 批准号:
    1855391
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Building Information, Inhabitant, Interaction and Intelligent Integrated Modeling (BI5M)
CPS:中:协作研究:建筑信息、居民、交互和智能集成建模(BI5M)
  • 批准号:
    1836995
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Building Information, Inhabitant, Interaction and Intelligent Integrated Modeling BI5M
CPS:媒介:协作研究:建筑信息、居住、交互和智能集成建模BI5M
  • 批准号:
    1837021
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Research on building technical relationships with other companies to transform small and medium-sized manufacturing companies into independent companies
与其他企业建立技术合作关系,推动中小型制造企业转型为独立企业的研究
  • 批准号:
    18K01827
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: TTP Option: Medium: Building a Smart City Economy and Information Ecosystem to Motivate Pro-Social Transportation Behavior
CPS:TTP 选项:中:构建智慧城市经济和信息生态系统,激励亲社会交通行为
  • 批准号:
    1739413
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
  • 批准号:
    1564101
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了