Learning and Intelligent Systems: Modeling Learning to Reason with Cases in Engineering Ethics: A Test Domain for Intelligent Assistance

学习与智能系统:利用工程伦理案例对学习进行推理建模:智能辅助的测试领域

基本信息

  • 批准号:
    9720341
  • 负责人:
  • 金额:
    $ 52.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-10-01 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

9720341 Ashley A clinical ethicist, cognitive psychologist, law professor/computer scientist, and computer scientist/linguist team up to examine how students reason with and learn from case-based texts in the context of a two-term required graduate engineering ethics course. Taught by the clinical ethicist, the course is structured so that students regularly discuss and resolve cases as they are introduced to ethical reasoning and a set of methodological tools developed to aid in the resolution of ethical dilemmas. The overall goal of this research is to help students learn to identify ethical components in practical engineering problems and to enhance their ability to apply the methodological tools and justifications as they resolve the dilemmas. More specifically, the project goals are to (1) examine how engineering students adapt conceptual tools for ethical reasoning as they are introduced to, discuss, and resolve dilemmas presented in the case-based texts; (2) descriptively model this process using a Web-browser-compatible automated drafting environment (ADE) as a data gathering tool; (3) examine how ADE's on-line data base of case-based texts, conveniently accessible in ADE's Web-browser-like drafting environment, can assist this process; (4) explore how to use computational models of the underlying case-based reasoning to enable ADE to provide intelligent assistance in aspects of the process; and (S) evaluate how having access to ADE compliments or interferes with students' developing ability to identify, articulate, analyze and resolve ethical problems. The resulting methodological tool, ADE provides convenient access, for both teacher and student, to an on-line database of textual materials such as methodologies and cases outlined in the required course texts, mid-level principles, professional codes of engineering ethics, decisions of a professional association ethics review board and an existing on-line repository of engi neering ethics cases and commentary. ADE acts like an intelligent assistant engaging students in a dialectical process. It provides an "argument worksheet", a checklist to help the student analyze an ethical problem, case-based access to information for constructing the arguments, and feedback. ADE is evaluated empirically in terms of a cognitive model to be developed in an empirical investigation of case-based learning to solve ill-defined problems. Building ADE also contributes to three main research areas in Artificial Intelligence, Case-Based Reasoning, and Intelligent Tutoring: 1. Case representation and relevance assessment, 2. Planning ethical arguments and explaining those plans, and 3. Recognizing students' solution plans.
9720341阿什利临床伦理学家、认知心理学家、法学教授/计算机科学家和计算机科学家/语言学家组成团队,在为期两个学期的必修研究生工程伦理学课程的背景下,研究学生如何与基于案例的文本进行推理并从中学习。本课程由临床伦理学家教授,课程结构合理,使学生在学习伦理推理和一套有助于解决伦理困境的方法论工具时,定期讨论和解决案例。这项研究的总体目标是帮助学生学习识别实际工程问题中的伦理成分,并提高他们在解决困境时应用方法论工具和理由的能力。更具体地说,该项目的目标是:(1)考察工程学学生在被介绍、讨论和解决基于案例的文本中出现的困境时如何适应伦理推理的概念工具;(2)使用与Web浏览器兼容的自动绘图环境(ADE)作为数据收集工具来描述性地模拟这一过程;(3)检查ADE的基于案例的文本的在线数据库如何辅助这一过程;(4)探索如何使用基本案例推理的计算模型,使ADE能够在过程的各个方面提供智能帮助;以及(S)评估获得ADE对学生识别、表达、分析和解决伦理问题的能力的发展有何好处或干扰。作为最终的方法工具,ADE为教师和学生提供了方便地访问文本材料的在线数据库,例如所需课程文本中概述的方法和案例、中级原则、工程伦理专业准则、专业协会伦理审查委员会的决定和现有的工程伦理案例和评论在线储存库。ADE就像一个聪明的助手,让学生参与到一个辩证的过程中。它提供了一份“论点工作表”,一份帮助学生分析道德问题的核对表,基于案例的信息获取以构建论点,以及反馈。ADE是根据一个认知模型进行经验评估的,该模型将在基于案例的学习的经验调查中开发,以解决定义不明确的问题。构建ADE还有助于人工智能、基于案例的推理和智能辅导的三个主要研究领域:1.案例表示和相关性评估,2.规划伦理论点并解释这些计划,以及3.识别学生的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Ashley其他文献

Sampling and analysis issues relating to the ACGIH notice of intended change for the beryllium threshold limit value.
与 ACGIH 铍阈限值预期变更通知相关的采样和分析问题。
How to Improve the Explanatory Power of an Intelligent Textbook: a Case Study in Legal Writing
如何提高智能教材的解释力:以法律写作为例

Kevin Ashley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Ashley', 18)}}的其他基金

FAI: Using AI to Increase Fairness by Improving Access to Justice
FAI:利用人工智能改善诉诸司法的机会来提高公平性
  • 批准号:
    2040490
  • 财政年份:
    2021
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
DIP: Teaching Writing and Argumentation with AI-Supported Diagramming and Peer Review
DIP:利用人工智能支持的图表和同行评审来教授写作和论证
  • 批准号:
    1122504
  • 财政年份:
    2011
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
EAGER: Modeling Interpretive Argument with Case Analogies and Rules in Ill-Defined Domains
EAGER:在定义不明确的领域中通过案例类比和规则对解释性论证进行建模
  • 批准号:
    1049414
  • 财政年份:
    2010
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
Hypothesis Formation and Testing in an Interpretive Domain: a Model and Intelligent Tutoring System
解释领域的假设形成和检验:模型和智能辅导系统
  • 批准号:
    0412830
  • 财政年份:
    2004
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
CRCD: Collaborative Case-Based Learning in Engineering Ethics
CRCD:工程伦理中基于案例的协作学习
  • 批准号:
    0203307
  • 财政年份:
    2002
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
  • 批准号:
    9987869
  • 财政年份:
    2000
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Practical Ethical Instruction with Expert-Analyzed Cases
合作研究:实践道德指导与专家分析案例
  • 批准号:
    9617071
  • 财政年份:
    1997
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
  • 批准号:
    9619713
  • 财政年份:
    1997
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9058441
  • 财政年份:
    1990
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
  • 批准号:
    23K03773
  • 财政年份:
    2023
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Multiple-Input-Multiple-Architectural (MIMA) Approach to Improving Learning and Decision Making in Robust Artificial Intelligent Systems (RAIS)
用于改进鲁棒人工智能系统 (RAIS) 中的学习和决策的多输入多架构 (MIMA) 方法
  • 批准号:
    DDG-2020-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Discovery Development Grant
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
  • 批准号:
    2141139
  • 财政年份:
    2022
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Continuing Grant
Intelligent Group Decision Systems and Preference Learning
智能群体决策系统和偏好学习
  • 批准号:
    RGPIN-2018-05903
  • 财政年份:
    2022
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Discovery Grants Program - Individual
Using machine learning for model-free intelligent control of complex systems with constraints.
使用机器学习对有约束的复杂系统进行无模型智能控制。
  • 批准号:
    559783-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
  • 批准号:
    RGPIN-2019-05223
  • 财政年份:
    2022
  • 资助金额:
    $ 52.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了