Hypothesis Formation and Testing in an Interpretive Domain: a Model and Intelligent Tutoring System
解释领域的假设形成和检验:模型和智能辅导系统
基本信息
- 批准号:0412830
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hypothesis Formation and Testing in an Interpretive Domain:a Model and Intelligent Tutoring SystemAbstractSince the days of Bacon and Galileo, formulating hypotheses about natural phenomena and testing them against empirical data have been cornerstones of the natural sciences. As a cognitive framework, hypothesis formation and testing are also important in legal reasoning. The legal domain, however, is different from natural science and mathematics in a significant respect. Determining whether a hypothesized rule and proposed outcome are consistent with past legal decisions is much more a matter of interpretation. The aims of this project are to (1) design and evaluate an Artificial Intelligence (AI) cognitive model of framing and testing hypotheses in an interpretive domain, legal reasoning, and (2) incorporate the model in an intelligent tutoring system (ITS) to teach law students the process. The project builds upon two recent developments: (1) a newly invented means to frame and evaluate hypotheses predicting the outcomes of new cases based on an AI database of existing precedents; (2) a convenient, on-line corpus of U.S. Supreme Court oral arguments in aural and written form, including many concrete examples of legal hypothesis framing and testing. In response to an advocate's proposed hypothesis of how the case should be decided, the Justices often challenge it by posing hypotheticals, sometimes forcing the advocate to modify or abandon the hypothesis. By studying these examples, the researchers, participating law students and law faculty will schematize and model the process of framing and testing legal hypotheses, implement it computationally, evaluate it empirically, and use it to design the ITS. The tutor will implement the model in various legal domains, each with a body of legal rules, issues, precedents, and principles, operationalized in a way that supports hypothesis formulation, prediction, testing, and explanation. Using the model, it will guide and challenge students' arguments. It will predict outcomes of cases, help students construct tests and rationales justifying the prediction, and help them evaluate the hypothesis by posing or responding to hypothetical challenges.The researchers will evaluate the project's success in terms of: (1) the accuracy of the model's predictions for new cases and the extent it improves case retrieval; (2) how well model-generated arguments compare to those in the Supreme Court oral arguments or generated by law students; (3) how well ITS-trained students compare to a control group taught the same process using conventional law school methods; (4) whether ITS-trained students generate more accurate self-explanations of the Supreme Court oral arguments. This work extends AI techniques to a much less well-structured domain than natural science and mathematics, one more like the common sense domains AI has yet to address. By using AI to investigate empirically a cognitive phenomenon, framing and testing hypotheses in an interpretive domain, it will contribute to research in AI & Law, Case-based Reasoning, AI & Education, and Cognitive Science.
自培根和伽利略以来,对自然现象提出假设并根据经验数据对其进行检验一直是自然科学的基石。作为一种认知框架,假设的形成和检验在法律的推理中同样重要。然而,法律的领域与自然科学和数学在一个重要的方面是不同的。确定一个假设的规则和提议的结果是否与过去的法律的决定一致,更多的是一个解释的问题。该项目的目的是(1)设计和评估一个人工智能(AI)认知模型的框架和测试假设的解释域,法律的推理,(2)将该模型纳入智能辅导系统(ITS)教法律学生的过程。该项目建立在两个最新的发展基础上:(1)一种新发明的方法,根据现有先例的人工智能数据库来构建和评估预测新案件结果的假设;(2)一个方便的在线语料库,以听觉和书面形式提供美国最高法院口头辩论,包括许多法律的假设框架和测试的具体例子。为了回应辩护律师提出的关于案件应该如何判决的假设,大法官经常通过提出假设来挑战它,有时迫使辩护律师修改或放弃假设。通过研究这些示例,研究人员、参与的法学院学生和法学院教师将对构建和测试法律的假设的过程进行系统化和建模,通过计算实现它,根据经验评估它,并使用它来设计ITS。导师将在各个法律的领域实施该模型,每个领域都有一套法律的规则,问题,先例和原则,以支持假设制定,预测,测试和解释的方式操作。利用该模型,它将引导和挑战学生的论点。它将预测案例的结果,帮助学生构建测试和合理的预测,并帮助他们通过提出或回应假设的挑战来评估假设。研究人员将根据以下方面来评估项目的成功:(1)模型对新案例的预测准确性以及它改善案例检索的程度;(2)模型生成的论点与最高法院口头辩论或法律学生生成的论点相比如何;(3)接受过ITS培训的学生与使用传统法学院方法教授相同过程的对照组相比如何;(4)接受过ITS培训的学生是否对最高法院的口头辩论做出了更准确的自我解释。这项工作将人工智能技术扩展到了一个比自然科学和数学结构更不完善的领域,一个更像人工智能尚未解决的常识领域。 通过使用人工智能来经验性地调查认知现象,在解释领域中构建和测试假设,它将有助于人工智能法律,基于案例的推理,人工智能教育和认知科学的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Ashley其他文献
Sampling and analysis issues relating to the ACGIH notice of intended change for the beryllium threshold limit value.
与 ACGIH 铍阈限值预期变更通知相关的采样和分析问题。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2
- 作者:
M. Brisson;Kevin Ashley - 通讯作者:
Kevin Ashley
How to Improve the Explanatory Power of an Intelligent Textbook: a Case Study in Legal Writing
如何提高智能教材的解释力:以法律写作为例
- DOI:
10.1007/s40593-024-00399-w - 发表时间:
2024 - 期刊:
- 影响因子:4.9
- 作者:
Francesco Sovrano;Kevin Ashley;Peter Leonid Brusilovsky;Fabio Vitali - 通讯作者:
Fabio Vitali
Kevin Ashley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Ashley', 18)}}的其他基金
FAI: Using AI to Increase Fairness by Improving Access to Justice
FAI:利用人工智能改善诉诸司法的机会来提高公平性
- 批准号:
2040490 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
DIP: Teaching Writing and Argumentation with AI-Supported Diagramming and Peer Review
DIP:利用人工智能支持的图表和同行评审来教授写作和论证
- 批准号:
1122504 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Modeling Interpretive Argument with Case Analogies and Rules in Ill-Defined Domains
EAGER:在定义不明确的领域中通过案例类比和规则对解释性论证进行建模
- 批准号:
1049414 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CRCD: Collaborative Case-Based Learning in Engineering Ethics
CRCD:工程伦理中基于案例的协作学习
- 批准号:
0203307 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
- 批准号:
9987869 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Practical Ethical Instruction with Expert-Analyzed Cases
合作研究:实践道德指导与专家分析案例
- 批准号:
9617071 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
- 批准号:
9619713 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Learning and Intelligent Systems: Modeling Learning to Reason with Cases in Engineering Ethics: A Test Domain for Intelligent Assistance
学习与智能系统:利用工程伦理案例对学习进行推理建模:智能辅助的测试领域
- 批准号:
9720341 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Linguistic knowledge and language change: Testing and forming a theory of social meaning formation based on Irish English usage data
语言知识和语言变化:基于爱尔兰英语使用数据测试和形成社会意义形成理论
- 批准号:
22KK0193 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Magnetic Zooms: Testing how magnetic fields shape galaxy structure and star formation
磁变焦:测试磁场如何塑造星系结构和恒星形成
- 批准号:
2904459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Testing the relationship between HCN, dense gas and star formation
测试HCN、致密气体和恒星形成之间的关系
- 批准号:
2773890 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Testing the mechanisms of lipid droplet formation in the brain
测试大脑中脂滴形成的机制
- 批准号:
573044-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Testing SIDM with Realistic Galaxy Formation Simulations
使用真实的星系形成模拟测试 SIDM
- 批准号:
2246631 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Discovering Hidden Planets and Testing Our Planet Formation Theories
发现隐藏的行星并测试我们的行星形成理论
- 批准号:
569644-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Testing models of early Earth crust formation and tectonics
职业:测试早期地壳形成和构造的模型
- 批准号:
2046598 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Roles of cultural and taste heterogeneity in market integration and the formation of economic regions: Testing the localized taste hypothesis
文化和品味异质性在市场一体化和经济区域形成中的作用:检验本地化品味假设
- 批准号:
21H00706 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Testing models of metamorphic sole formation and early subduction evolution in the Easton Metamorphic Suite, Northwest Cascades, Washington
测试华盛顿州西北喀斯喀特伊斯顿变质层组中的变质底形成和早期俯冲演化模型
- 批准号:
1948584 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Testing SIDM with Realistic Galaxy Formation Simulations
使用真实的星系形成模拟测试 SIDM
- 批准号:
2013909 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant