FAI: Using AI to Increase Fairness by Improving Access to Justice

FAI:利用人工智能改善诉诸司法的机会来提高公平性

基本信息

  • 批准号:
    2040490
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This project applies Artificial Intelligence (AI) to increase social fairness by improving public access to justice. Although many AI tools are already available to law firms and legal departments, these tools do not typically reach members of the public and legal service practitioners except through expensive commercial paywalls. The research team will develop two tools to make legal sources more understandable: Statutory Term Interpretation Support (STATIS) and Case Argument Summarization (CASUM). STATIS is an AI-based legal information retrieval tool to help users understand and interpret statutory terms. It helps them find sentences explicating the terms of interest and cases applying these terms. Inputs to the system are queries about a statutory term and the provision from which it comes. The system outputs a list of sentences retrieved from case law that mention the term in a manner useful for understanding and elaborating its meaning. CASUM summarizes case decisions in terms of legal argument triples: the major issues a court addressed in the case, the court’s conclusion with respect to each issue, and the court’s reasons for reaching the conclusion. Given a case text, it outputs simple argument diagrams graphically summarizing arguments in the decision. Ultimately, the tools will be deployed through legal information institutes (LIIs) that provide free access to the public. They will help the lay public to understand, as well as to access, legal source materials by making it easy for them to find sentences in legal cases that provide definitions, tests, examples or counterexamples of statutory terms and to see the issues, conclusions, and reasons a court addresses in a decision. The project applies the latest natural language processing approaches. Pre-trained legal language models will improve the performance of machine learning in identifying sentences in legal cases that explain statutory terms or state issues, conclusions, and reasons. Recent developments in extractive and abstractive summarization, text simplification, and argument mining will generate high quality legal information for diverse users. A legal language model will be pretrained on a large corpus of publicly available court decisions and fine-tuned to identify features that play a significant role in retrieving high value sentences explaining statutory terms. A prototype module for retrieving and ranking such sentences by explanatory value and a graphical user interface ultimately deployable via an LII website will be developed. Using the legal language model, techniques for matching annotated sentences from case summaries to the corresponding sentences in the full texts will be developed and fine-tuned to classify sentences in which a court identifies issues, conclusions, and reasons justifying the conclusions. Finally, a prototype module for graphically summarizing cases in terms of argument diagrams depicting legal argument triples will be developed and applied to summarizing cases that explain statutory terms. Planning will be done for a user interface suitable for integration with the LII websites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目应用人工智能(AI),通过改善公众获得司法公正来增加社会公平。尽管许多人工智能工具已经可供律师事务所和法律的部门使用,但除非通过昂贵的商业付费墙,否则这些工具通常不会接触到公众和法律的服务从业者。研究小组将开发两种工具,使法律的来源更容易理解:统计术语解释支持(STATIS)和案例论证摘要(CASUM)。STATIS是一个基于人工智能的法律的信息检索工具,帮助用户理解和解释法定术语。它帮助他们找到解释感兴趣的术语的句子和应用这些术语的案例。该系统的输入是关于法定期限及其所依据的条款的查询。该系统输出一个从判例法中检索到的句子清单,这些句子以有助于理解和阐述其含义的方式提到该术语。CASUM根据法律的论证三要素总结案件判决:法院在案件中处理的主要问题,法院对每个问题的结论,以及法院得出结论的理由。给定一个案例文本,它输出简单的论证图,以图形方式总结决策中的论证。最终,这些工具将通过向公众免费提供的法律的信息机构部署。它们将帮助普通公众理解和获取法律的原始材料,使他们能够轻松地找到法律的案件中提供法定术语定义、检验、示例或反例的句子,并看到法院在判决中所处理的问题、结论和理由。 该项目采用最新的自然语言处理方法。预训练的法律的语言模型将提高机器学习在法律的案件中识别解释法定条款或国家问题、结论和原因的句子的性能。最近在提取和抽象摘要、文本简化和论证挖掘方面的发展将为不同的用户生成高质量的法律的信息。一个法律的语言模型将在大量公开的法院判决语料库上进行预训练,并进行微调,以识别在检索解释法定术语的高价值句子方面发挥重要作用的特征。将开发一个原型模块,用于按解释价值检索和排列这些句子,并开发一个最终可通过法律信息基础设施网站部署的图形用户界面。使用法律的语言模型,将开发和调整将案例摘要中的注释句子与全文中的相应句子匹配的技术,以分类法院确定问题、结论和证明结论的理由的句子。最后,将开发一个原型模块,用于以描绘法律的论证三元组的论证图的形式,以图形方式总结案例,并将其应用于总结解释法定术语的案例。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ArgLegalSumm: Improving Abstractive Summarization of Legal Documents with Argument Mining
ArgLegalSumm:通过论证挖掘改进法律文档的抽象摘要
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models
使用预先训练的语言模型发现法律案件决策中的解释性句子
Accounting for Sentence Position and Legal Domain Sentence Embedding in Learning to Classify Case Sentences
  • DOI:
    10.3233/faia210314
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huihui Xu;Jaromír Šavelka;Kevin D. Ashley
  • 通讯作者:
    Huihui Xu;Jaromír Šavelka;Kevin D. Ashley
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Ashley其他文献

Sampling and analysis issues relating to the ACGIH notice of intended change for the beryllium threshold limit value.
与 ACGIH 铍阈限值预期变更通知相关的采样和分析问题。
How to Improve the Explanatory Power of an Intelligent Textbook: a Case Study in Legal Writing
如何提高智能教材的解释力:以法律写作为例

Kevin Ashley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Ashley', 18)}}的其他基金

DIP: Teaching Writing and Argumentation with AI-Supported Diagramming and Peer Review
DIP:利用人工智能支持的图表和同行评审来教授写作和论证
  • 批准号:
    1122504
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: Modeling Interpretive Argument with Case Analogies and Rules in Ill-Defined Domains
EAGER:在定义不明确的领域中通过案例类比和规则对解释性论证进行建模
  • 批准号:
    1049414
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Hypothesis Formation and Testing in an Interpretive Domain: a Model and Intelligent Tutoring System
解释领域的假设形成和检验:模型和智能辅导系统
  • 批准号:
    0412830
  • 财政年份:
    2004
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CRCD: Collaborative Case-Based Learning in Engineering Ethics
CRCD:工程伦理中基于案例的协作学习
  • 批准号:
    0203307
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
  • 批准号:
    9987869
  • 财政年份:
    2000
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Practical Ethical Instruction with Expert-Analyzed Cases
合作研究:实践道德指导与专家分析案例
  • 批准号:
    9617071
  • 财政年份:
    1997
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Adding Domain Knowledge to Inductive Learning Methods for Classifying Texts
将领域知识添加到归纳学习方法中以对文本进行分类
  • 批准号:
    9619713
  • 财政年份:
    1997
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Learning and Intelligent Systems: Modeling Learning to Reason with Cases in Engineering Ethics: A Test Domain for Intelligent Assistance
学习与智能系统:利用工程伦理案例对学习进行推理建模:智能辅助的测试领域
  • 批准号:
    9720341
  • 财政年份:
    1997
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9058441
  • 财政年份:
    1990
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
  • 批准号:
    10093235
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Collaborative R&D
MediMusic: using AI for music therapy in care homes
MediMusic:在疗养院使用人工智能进行音乐治疗
  • 批准号:
    10107316
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Collaborative R&D
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
  • 批准号:
    BB/Y513982/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
  • 批准号:
    BB/Y51391X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
  • 批准号:
    2904562
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Sensing the Forest - Let the Forest Speak using the Internet of Things, Acoustic Ecology and Creative AI
感知森林——物联网、声学生态、创意人工智能让森林说话
  • 批准号:
    AH/X011585/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Launchpad
Using AI based modelling to drive the engineering of biology
使用基于人工智能的建模来推动生物学工程
  • 批准号:
    BB/Y514056/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
CAREER: A Platform for Per-Packet AI using Heterogeneous Data Planes
职业:使用异构数据平面的每数据包人工智能平台
  • 批准号:
    2338034
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
  • 批准号:
    2418277
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了