Statistical Mechanics of Driven Diffusive Systems

驱动扩散系统的统计力学

基本信息

项目摘要

9727574 Zia This is a renewal grant to two researchers to continue their program on driven diffusive systems: complex behavior of interacting many-particle systems which are driven into steady states far from thermal equilibrium. A combination of techniques will be used to study these systems including exact solutions and simulations on discrete lattice models, as well as analytic techniques on continuum field theories. These systems are relevant to such diverse applications as surface/crystal growth, intercalation, granular materials, fracture dynamics, gel electrophoresis, diffusion in complex environments, traffic flow, etc. The first part of this grant will focus on collective behavior in driven diffusive lattice gases. While the simplest models are reasonably well understood, many of their generalizations, e.g., skew boundary conditions, anisotropic interactions, extreme aspect ratios or charge asymmetries, present unanticipated challenges. The second part will focus on new directions. These include random walks in a dynamic background; the study of histograms (full distributions) of various observables and the formulation of systematic Grassmannian field theories for systems with strict volume constraints; and, finally, fundamental issues in the statistical mechanics of non-equilibrium steady states. %%% This is a renewal grant to two researchers to continue their program on driven diffusive systems: complex behavior of interacting many-particle systems which are driven into steady states far from thermal equilibrium. A combination of techniques will be used to study these systems including exact solutions and simulations on discrete lattice models, as well as analytic techniques on continuum field theories. These systems are relevant to such diverse applications as surface/crystal growth, intercalation, granular materials, fracture dynamics, gel electrophoresis, diffusion in complex environments, traffic flow, etc. ***
9727574 Zia这是对两名研究人员的更新资助,以继续他们的驱动扩散系统计划:相互作用的多粒子系统的复杂行为,这些系统被驱动到远离热平衡的稳定状态。 一个技术的组合将被用来研究这些系统,包括精确的解决方案和离散晶格模型的模拟,以及连续场理论的分析技术。 这些系统与表面/晶体生长、嵌入、颗粒材料、断裂动力学、凝胶电泳、复杂环境中的扩散、交通流等不同的应用有关。 第一部分的资助将集中在集体行为的驱动扩散晶格气体。 虽然最简单的模型是合理的理解,他们的许多概括,例如,倾斜边界条件、各向异性相互作用、极端纵横比或电荷不对称性提出了意想不到的挑战。 第二部分将侧重于新的方向。 这些包括随机游走在动态背景下;研究直方图(全分布)的各种观测和制定系统的格拉斯曼场理论的系统与严格的体积限制;最后,基本问题的统计力学的非平衡稳定状态。 这是对两名研究人员的更新资助,以继续他们的驱动扩散系统计划:相互作用的多粒子系统的复杂行为,这些系统被驱动到远离热平衡的稳定状态。 一个技术的组合将被用来研究这些系统,包括精确的解决方案和离散晶格模型的模拟,以及连续场理论的分析技术。 这些系统与表面/晶体生长、嵌入、颗粒材料、断裂动力学、凝胶电泳、复杂环境中的扩散、交通流等各种应用有关。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Royce K Zia其他文献

Royce K Zia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Royce K Zia', 18)}}的其他基金

Statistical Mechanics of Interfaces and Driven Systems
接口和驱动系统的统计力学
  • 批准号:
    9119102
  • 财政年份:
    1992
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Continuing Grant
Statistical Mechanics of Interfaces
接口统计力学
  • 批准号:
    8817653
  • 财政年份:
    1989
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Continuing Grant
Statistical Mechanics of Interfaces with Anisotropic Surface Tension (Materials Research)
各向异性表面张力界面的统计力学(材料研究)
  • 批准号:
    8504716
  • 财政年份:
    1986
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Fundamentals of Entropy-Driven Mechanics of Flexible Nanostructures
职业:柔性纳米结构的熵驱动力学基础
  • 批准号:
    2237530
  • 财政年份:
    2023
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Standard Grant
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    2227232
  • 财政年份:
    2022
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Standard Grant
CAREER: Integrating Information Theory with Data-Driven Mechanics: Toward Predictive Modeling of Material Behavior far from Equilibrium
职业:将信息理论与数据驱动力学相结合:对远离平衡的材料行为进行预测建模
  • 批准号:
    2047506
  • 财政年份:
    2021
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Standard Grant
Data-driven approach for understanding chaotic phenomena in spacecraft orbital mechanics
用于理解航天器轨道力学中混沌现象的数据驱动方法
  • 批准号:
    21K18781
  • 财政年份:
    2021
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Accurate Molecular Mechanics Force Fields through Data-driven Parameter Type Definitions
通过数据驱动的参数类型定义精确的分子力学力场
  • 批准号:
    462118626
  • 财政年份:
    2021
  • 资助金额:
    $ 43.7万
  • 项目类别:
    WBP Position
Accurate Molecular Mechanics Force Fields through Data-driven Parameter Type Definitions
通过数据驱动的参数类型定义精确的分子力学力场
  • 批准号:
    462118539
  • 财政年份:
    2021
  • 资助金额:
    $ 43.7万
  • 项目类别:
    WBP Fellowship
Bringing granular mechanics to prevent fluid-driven soil erosion problems
利用颗粒力学来防止流体驱动的土壤侵蚀问题
  • 批准号:
    DE200101116
  • 财政年份:
    2020
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Discovery Early Career Researcher Award
Solid mechanics and AI hybrid approach to mitigation of climate change driven railway track buckling
固体力学和人工智能混合方法缓解气候变化导致的铁路轨道屈曲
  • 批准号:
    2443523
  • 财政年份:
    2020
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Studentship
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    1953323
  • 财政年份:
    2020
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Standard Grant
Microscopic approaches to the nonlinear mechanics of driven defect-rich crystals
驱动缺陷丰富晶体非线性力学的微观方法
  • 批准号:
    401742484
  • 财政年份:
    2018
  • 资助金额:
    $ 43.7万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了