Accurate Molecular Mechanics Force Fields through Data-driven Parameter Type Definitions
通过数据驱动的参数类型定义精确的分子力学力场
基本信息
- 批准号:462118626
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Position
- 财政年份:2021
- 资助国家:德国
- 起止时间:2020-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular processes are complex and only a fraction of their details is discernable by experimental techniques. However, there are many applications in which it is of high interest to be able to predict the relevant molecular details. In this context, atomistic simulations have become increasingly important to probe the properties and interactions of (bio)molecules. Although these simulations can be theoretically sound, they are not necessarily accurate, and a key source of error is the underlying molecular mechanics force field, which relates a given molecular structure to atomic forces. Today, a major hurdle to improving force fields is the lack of rigor in the schemes used to cast atoms into categories for assignment of force field parameters. These categories, which are commonly termed parameter types, group similar chemical environments (i.e. substructures) and assign a common set of parameters to the atoms within these chemical environments. To avoid overfitting and facilitate parameter optimization, these types should be as few as possible while still enabling good agreement between computed and reference (experimental or high-level quantum chemistry calculation) molecular properties. However, parameter types have historically been assigned in a largely ad hoc manner. This prevents the rigorous optimization of force field parameters as new reference data becomes available and the straightforward introduction of new chemical substructures into existing force fields. Here, I propose a novel approach that overcomes the aforementioned obstacles through the combined data-driven optimization of force field parameter type definitions and force field parameter values. The approach is fundamentally different from existing force field optimization approaches that only tuned or added parameters to a given force field. In the proposed project, Bayesian inference and Monte Carlo sampling algorithms will be applied for the sampling of parameter type definitions in order to obtain force fields with high accuracy while at the same time having as few types as necessary (thus being as simple as possible). At any given step of the parameter sampling process, existing parameter types are either merged or split into new ones. Since the number of possible merging or splitting operations is vast, parameter types will be represented through quantum-level atomic features, thus enabling a computable physics-based description for a given chemical environment. The significance of the proposed work is its fundamentally data-driven and rigorous way to build force fields without the restriction to a particular functional form or application domain of the force field. Furthermore, the developed approach will make force fields easily extensible if new reference data becomes available- an important aspect in materials design and drug discovery. Finally, the impact of the research will be maximized by implementing the developed technology into an open source python package.
分子过程是复杂的,只有一小部分细节是通过实验技术辨别出来的。然而,在许多应用中,能够预测相关的分子细节是非常重要的。在这种背景下,原子模拟已经变得越来越重要,以探测(生物)分子的性质和相互作用。虽然这些模拟在理论上是合理的,但它们不一定准确,并且错误的关键来源是潜在的分子力学力场,该力场将给定的分子结构与原子力相关联。今天,改进力场的一个主要障碍是用于将原子归类以分配力场参数的方案缺乏严谨性。这些类别通常被称为参数类型,将类似的化学环境(即子结构)分组,并将一组共同的参数分配给这些化学环境中的原子。为了避免过拟合和促进参数优化,这些类型应该尽可能少,同时仍然能够实现计算和参考(实验或高级量子化学计算)分子性质之间的良好一致性。然而,参数类型在历史上主要是以特别的方式分配的。这阻止了随着新的参考数据变得可用而对力场参数进行严格优化,以及直接将新的化学子结构引入现有力场。在这里,我提出了一种新的方法,通过结合数据驱动的力场参数类型定义和力场参数值的优化,克服了上述障碍。该方法与现有的力场优化方法有根本不同,现有的力场优化方法仅对给定的力场进行调整或添加参数。在拟议的项目中,贝叶斯推断和蒙特卡罗抽样算法将用于参数类型定义的抽样,以获得高精度的力场,同时具有尽可能少的类型(因此尽可能简单)。在参数采样过程的任何给定步骤中,现有参数类型要么被合并,要么被拆分为新的参数类型。由于可能的合并或分裂操作的数量是巨大的,参数类型将通过量子级原子特征来表示,从而为给定的化学环境提供基于可计算物理的描述。所提出的工作的意义在于其基本上是数据驱动和严格的方式来构建力场,而不限于力场的特定功能形式或应用领域。此外,如果新的参考数据可用,所开发的方法将使力场易于扩展-这是材料设计和药物发现的一个重要方面。最后,通过将开发的技术实施到开源python包中,将研究的影响最大化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Tobias Hüfner其他文献
Dr. Tobias Hüfner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Tobias Hüfner', 18)}}的其他基金
Accurate Molecular Mechanics Force Fields through Data-driven Parameter Type Definitions
通过数据驱动的参数类型定义精确的分子力学力场
- 批准号:
462118539 - 财政年份:2021
- 资助金额:
-- - 项目类别:
WBP Fellowship
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Molecular Modeling of Ring Polymer Mechanics - Expanding Applicability of Ring Polymer
职业:环状聚合物力学的分子模拟 - 扩展环状聚合物的适用性
- 批准号:
2236693 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular determinants of cell mechanics
细胞力学的分子决定因素
- 批准号:
RGPIN-2020-04608 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Mechanics of Active Polymers and Morphing Structures: Determine the Role of Molecular Interactions and Stiffness Heterogeneity in Reversible Shape Morphing
职业:活性聚合物和变形结构的力学:确定分子相互作用和刚度异质性在可逆形状变形中的作用
- 批准号:
2144687 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Novel robot actuators leveraging the molecular mechanics and topology of biological muscle
利用分子力学和生物肌肉拓扑结构的新型机器人执行器
- 批准号:
RGPIN-2021-04049 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploring ultimate mechanical characteristics of polymers, from molecular to fracture mechanics
探索聚合物的最终机械特性,从分子力学到断裂力学
- 批准号:
2210184 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Novel robot actuators leveraging the molecular mechanics and topology of biological muscle
利用分子力学和生物肌肉拓扑结构的新型机器人执行器
- 批准号:
RGPIN-2021-04049 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of a fragment-based docking method based on statistical mechanics of molecular liquids
基于分子液体统计力学的碎片对接方法的发展
- 批准号:
21K12106 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)