Formation Process and 3-D Dynamics of Vortex Rings
涡环的形成过程和 3-D 动力学
基本信息
- 批准号:9729158
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 1999-05-03
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9729158 Nitsche The goal of the present project is to perform numerical investigations to develop a better understanding of vortex ring dynamics. The case is considered in which a vortex ring is formed by ejecting an amount of fluid from an opening. In the first part of the project, the focus will be on the initial formation process of axisymmetric rings. Viscous effects dominate the flow in an initial time interval and affect the vortex trajectory and total shed circulation. The effects of viscosity by adapting a successful 2-dimensional Navier Stokes solver for high Reynolds number flow to the axisymmetric case will be investigated. Inviscid effects of the flow using a vortex sheet model will also be studied in order to determine whether present similarity theory predictions can be adjusted to better predict the initial flow. The second part of the project concerns 3-dimensional dynamics of vortex rings formed at an opening. The development of a numerical method to compute 3-dimensional vortex sheet separation at an edge will enable the study of the stability of these flows, as well as the effects of nonaxisymmetric openings and nonaxisymmetric forcing. For this purpose, a 3-dimensional vortex filament method will be developed which incorporates vortex separation at a sharp edge and implements a fast summation algorithm to enable high resolution calculations. Understanding the dynamics of vortex rings is essential to understand more complicated flows such as those that occur in combustion processes, or in the airborne vortex structures presenting a hazard to aircraft. An inviscid numerical model has been developed for axisymmetric vortex rings generated at a circular opening. This model was proven by comparison with experiment to recover detailed information about the real flow. In the present work, this model will be extended to 3-dimensional flows, and will be used to study the stability of the flows, the effects of non-axisymme tric openings and nonaxisymmetric forcing, as well as the potential applicability of present theoretical results to predict the flow. Several of these aspects of the flow are difficult to understand experimentally or analytically, and the computations promise to give a deeper insight into the flow dynamics. In order to perform this work, current numerical tools available for 2-dimensional flows will be expanded to 3-dimensions.
小行星9729158 本项目的目标是进行数值研究,以制定一个 更好地理解涡环动力学。 考虑的情况是, 涡流环通过从开口喷射一定量的流体而形成。 上 作为该项目的一部分,重点将放在初步形成过程中, 轴对称环 粘性效应在初始时间间隔内占主导地位 并影响涡的轨迹和总的脱落环量。 粘性效应 通过采用一个成功的高雷诺数的二维Navier Stokes解算器, 将研究轴对称情况下的数流。 无粘效应 还将研究使用涡面模型的流动,以便确定是否 目前的相似性理论预测可以调整,以更好地预测初始 流 该项目的第二部分涉及三维动力学的旋涡 在开口处形成的环。 发展一种数值方法来计算 3-在边缘处的三维涡面分离将使研究 这些流动的稳定性,以及非轴对称开口的影响, 非轴对称强迫 为此,三维涡丝 将开发一种方法,该方法包括在锐缘处的涡流分离 并实现快速求和算法以实现高分辨率计算。 了解涡环的动力学对于了解更多 复杂的流动,如发生在燃烧过程中的流动,或 对飞机构成危险的空中涡流结构。 一个无粘数值 本文建立了一个在圆截面上产生的轴对称涡环模型, 开放后 通过与实验的对比,证明了该模型的有效性 关于真实的流的详细信息。 在目前的工作中,该模型将 扩展到三维流动,并将用于研究的稳定性, 流动,非轴对称开口和非轴对称强迫的影响, 以及目前的理论结果预测流动的潜在适用性。 流动的这些方面中有几个很难通过实验或 分析上,计算承诺给一个更深入的了解流 动力学为了进行这项工作,目前的数字工具,可用于 2-三维流动将扩展到三维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monika Nitsche其他文献
High order quadratures for the evaluation of interfacial velocities in axi-symmetric Stokes flows
用于评估轴对称斯托克斯流中界面速度的高阶求积
- DOI:
10.1016/j.jcp.2010.04.043 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Monika Nitsche;Héctor D. Ceniceros;A. Karniala;S. Naderi - 通讯作者:
S. Naderi
Monika Nitsche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monika Nitsche', 18)}}的其他基金
Attracting, Motivating and Preparing Mathematics students and educators in the Southwest by building an energetic community
通过建立一个充满活力的社区来吸引、激励和培养西南地区的数学学生和教育工作者
- 批准号:
1148801 - 财政年份:2012
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
On The Limiting Behaviour of Regularizations of the Euler Equations With Vortex Sheet Initial Data
涡片初始数据欧拉方程正则化的极限行为
- 批准号:
0308061 - 财政年份:2003
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Formation Process and 3-D Dynamics of Vortex Rings
涡环的形成过程和 3-D 动力学
- 批准号:
9996254 - 财政年份:1998
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
多臂Bandit process中的Bayes非参数方法
- 批准号:71771089
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Improving aerosol and spray process computation fluid dynamics models with machine learning approaches
利用机器学习方法改进气溶胶和喷雾过程计算流体动力学模型
- 批准号:
2881557 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Studentship
Elucidation of dynamics of complex fluid droplet levitated on high temperature surface and their development into process intensification
阐明高温表面悬浮复杂液滴的动力学及其发展过程强化
- 批准号:
23K13592 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
解释南大洋海洋捕食者热点的过程、模式和动态
- 批准号:
2890268 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Studentship
Historical study on the diffusion process of computational scientific methods with the case of fluid dynamics in post-war Japan
以战后日本流体力学为例的计算科学方法传播过程的历史研究
- 批准号:
23H00598 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating carbon dynamics and process fundamentals to predict greenhouse gas emissions from tailings ponds
研究碳动态和过程基本原理以预测尾矿库的温室气体排放
- 批准号:
RGPIN-2020-04673 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Discovery Grants Program - Individual
Structural dynamics of WC-Co tool surface in Ti cutting process
Ti切削过程中WC-Co刀具表面的结构动力学
- 批准号:
22K20419 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Data-based Control of Process Feature Dynamics through Latent Behaviours
通过潜在行为对过程特征动态进行基于数据的控制
- 批准号:
DP220100355 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Discovery Projects
River dynamics and process-based restoration of fluvial systems
河流动力学和基于过程的河流系统恢复
- 批准号:
RGPIN-2022-04659 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of bright and dark states in primary process of photosynthesis investigated by multi ultrafast spectroscopy
多重超快光谱研究光合作用初级过程明暗态动态
- 批准号:
21K03425 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)