Fast and Accurate Algorithms for Structured Matrix Computations

快速准确的结构化矩阵计算算法

基本信息

  • 批准号:
    9732355
  • 负责人:
  • 金额:
    $ 14.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Numerous applications in sciences, engineering and mathematics give rise to problems involving structured matrices such as Toeplitz, Hankel, Vandermonde, controllability, observability, Cauchy, Bezoutians, along with many other patterns of structure. In many of these applications the use of standard mathematical software tools (such as MATLAB, Mathematica, Maple, LAPACK, etc.) is not appropriate, because their ignoring of structure requires unnecessary storage as well as an extremely large amount of CPU time. Secondly, many structured matrices, e.g., Hankel, Pick, Hilbert, Vandermonde, are extremely ill- conditioned, so that all available standard methods often fail to produce even one correct digit in the computed solution. The objective of this project is the study of theoretical and computational problems related to structured matrices which arise in several applied areas, including signal and image processing, system theory, and control theory. New accurate fast and superfast algorithms will be developed for several new classes of structured matrices, arising in rational matrix interpolation and approximation problems with norm constraints, in Gaussian quadrature as well as in signal and image processing. Along with these direct methods, the approach will be used to design new classes of preconditioners based on discrete real transforms to speed- up the convergence of the conjugate gradient method for block Toeplitz-plus-Hankel matrices.
在科学、工程和数学中的许多应用引起了涉及结构矩阵的问题,如Toeplitz、Hankel、Vandermonde、可控性、可观测性、Cauchy、Bezoutians以及沿着的许多其他结构模式。在许多这些应用中,使用标准的数学软件工具(如MATLAB,Mathematica,Maple,LAPACK等)是不合适的,因为它们忽略了结构,需要不必要的存储和大量的CPU时间。其次,许多结构化矩阵,例如,Hankel、Pick、Hilbert、Vandermonde都是极端病态的,因此所有可用的标准方法经常在计算的解中不能产生甚至一个正确的数字。 该项目的目标是研究与结构矩阵相关的理论和计算问题,这些问题出现在几个应用领域,包括信号和图像处理,系统理论和控制理论。新的准确的快速和超快速算法将开发几个新的类结构矩阵,在有理矩阵插值和近似问题与规范的约束,在高斯求积以及在信号和图像处理。沿着这些直接方法,该方法将被用来设计基于离散真实的变换的新的预处理器类,以加速块Toeplitz-plus-Hankel矩阵的共轭梯度法的收敛。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Olshevsky其他文献

Vadim Olshevsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Olshevsky', 18)}}的其他基金

IWOTA 2005 - International Workshop on Operator Theory and Applications; Storrs, CT
IWOTA 2005 - 算子理论与应用国际研讨会;
  • 批准号:
    0536873
  • 财政年份:
    2005
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
Fast and Accurate Algorithms for Structured Matrix Computations: Applications and Software
快速准确的结构化矩阵计算算法:应用程序和软件
  • 批准号:
    0242518
  • 财政年份:
    2002
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
Fast and Accurate Algorithms for Structured Matrix Computations: Applications and Software
快速准确的结构化矩阵计算算法:应用程序和软件
  • 批准号:
    0098222
  • 财政年份:
    2001
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant

相似海外基金

Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
  • 批准号:
    2046874
  • 财政年份:
    2021
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
  • 批准号:
    1845406
  • 财政年份:
    2019
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
"Fast and accurate structure-preserving algorithms in computational scattering, and interdisciplinary modeling and simulation"
“计算散射中快速准确的结构保持算法以及跨学科建模和仿真”
  • 批准号:
    250211-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Discovery Grants Program - Individual
Fast and accurate algorithms for solving eigenvalue problems
用于解决特征值问题的快速准确的算法
  • 批准号:
    18K11343
  • 财政年份:
    2018
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1733796
  • 财政年份:
    2017
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1733878
  • 财政年份:
    2017
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Standard Grant
Fast, accurate and stable matrix computation algorithms based on non-orthogonal transformations
基于非正交变换的快速、准确、稳定的矩阵计算算法
  • 批准号:
    17K19966
  • 财政年份:
    2017
  • 资助金额:
    $ 14.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了