AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
基本信息
- 批准号:1733796
- 负责人:
- 金额:$ 23.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the wealth of data being generated in every sphere of human endeavor, data exploration--analyzing, understanding, and extracting value from data--has become absolutely vital. Data visualization is by far the most common data exploration mechanism, used by novice and expert data analysts alike. Yet data visualization on increasingly larger datasets remains difficult: even simple visualizations of a large dataset can be slow and non-interactive, while visualizations of a sampled fraction of a dataset can mislead an analyst. The project aims to develop FastViz, a scalable visualization engine, that will not only enable visualization on datasets that are orders of magnitude larger in the same time, but also ensure the resulting visualizations satisfy key properties essential for correct analysis by end-users. To ensure immediate utilization, FastViz will be applied to three real-world application domains: battery science, advertising analysis, and genomic data analysis, and implemented in Zenvisage, an open-source visual exploration platform developed by the PIs. Students in the project gain invaluable experience in combining the algorithmic and systems considerations that enable data exploration. FastViz's development is driven by simultaneous investigation of systems considerations, such as indexing and storage techniques that enable various forms of online sampling, and algorithmic considerations for (a) visualization generation, where the goal is to produce incrementally improving visualizations in which the important features are displayed first, and (b) visualization selection, where the goal is to select, from a collection of as yet not generated visualizations, those that that satisfy desired criteria. On the systems front, FastViz will leverage and contribute back to recent developments on online sampling systems that enable the use of more powerful sampling modalities. On the algorithms front, FastViz will draw ideas from testing, distribution learning, and sublinear algorithms literature that, to the best knowledge of the PIs, have not been adapted in practice. The algorithms developed will obey optimality guarantees, and wherever possible, instance-optimality guarantees, ensuring that they will adapt to data characteristics in the most efficient way possible. The project will lead to a better understanding of the interplay between sampling algorithms development and systems design, facilitating the adoption of more realistic models and algorithms on the one hand, and the development of more powerful sampling engines that enable the models required within the algorithms.
随着人类活动的各个领域都产生了大量的数据,数据探索——分析、理解并从数据中提取价值——已经变得至关重要。数据可视化是迄今为止最常见的数据探索机制,新手和专家数据分析师都在使用它。然而,对越来越大的数据集进行数据可视化仍然很困难:即使是对大型数据集进行简单的可视化也可能是缓慢且非交互式的,而对数据集的采样部分进行可视化可能会误导分析师。该项目旨在开发FastViz,这是一个可扩展的可视化引擎,它不仅可以在同一时间内对大几个数量级的数据集进行可视化,而且还可以确保生成的可视化结果满足最终用户正确分析所需的关键属性。为了确保即时使用,FastViz将应用于三个现实世界的应用领域:电池科学、广告分析和基因组数据分析,并在PIs开发的开源视觉探索平台Zenvisage中实现。学生在项目中获得宝贵的经验,结合算法和系统的考虑,使数据探索。FastViz的开发是由对系统考虑因素的同时调查驱动的,例如支持各种形式在线采样的索引和存储技术,以及对(a)可视化生成的算法考虑,其目标是产生逐步改进的可视化,其中重要的特征首先显示,以及(b)可视化选择,其目标是从尚未生成的可视化集合中选择,那些满足期望标准的。在系统方面,FastViz将利用并回馈在线采样系统的最新发展,使其能够使用更强大的采样模式。在算法方面,FastViz将从测试、分布学习和次线性算法文献中汲取思想,就pi的最佳知识而言,这些思想尚未在实践中被采用。所开发的算法将遵循最优性保证,并且在可能的情况下,遵循实例最优性保证,确保它们将以最有效的方式适应数据特征。该项目将使人们更好地理解采样算法开发与系统设计之间的相互作用,一方面促进采用更现实的模型和算法,另一方面促进开发更强大的采样引擎,使算法所需的模型成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilias Diakonikolas其他文献
A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions
低次多项式阈值函数的正则引理和低权重近似器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;R. Servedio;Li;Andrew Wan - 通讯作者:
Andrew Wan
Online Learning of Halfspaces with Massart Noise
使用 Massart 噪声在线学习半空间
- DOI:
10.48550/arxiv.2405.12958 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Vasilis Kontonis;Christos Tzamos;Nikos Zarifis - 通讯作者:
Nikos Zarifis
The Sample Complexity of Robust Covariance Testing
鲁棒协方差检验的样本复杂性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel M. Kane - 通讯作者:
Daniel M. Kane
Near-Optimal Closeness Testing of Discrete Histogram Distributions
离散直方图分布的近最优紧密度测试
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;D. Kane;Vladimir Nikishkin - 通讯作者:
Vladimir Nikishkin
Super Non-singular Decompositions of Polynomials and Their Application to Robustly Learning Low-Degree PTFs
多项式的超非奇异分解及其在鲁棒学习低次 PTF 中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ilias Diakonikolas;Daniel Kane;Vasilis Kontonis;Sihan Liu;Nikos Zarifis - 通讯作者:
Nikos Zarifis
Ilias Diakonikolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilias Diakonikolas', 18)}}的其他基金
CAREER: Learning Algorithms with Robustness and Efficiency Guarantees
职业:学习具有鲁棒性和效率保证的算法
- 批准号:
2144298 - 财政年份:2022
- 资助金额:
$ 23.3万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
- 批准号:
2107079 - 财政年份:2021
- 资助金额:
$ 23.3万 - 项目类别:
Continuing Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
- 批准号:
2011255 - 财政年份:2019
- 资助金额:
$ 23.3万 - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
- 批准号:
1652862 - 财政年份:2017
- 资助金额:
$ 23.3万 - 项目类别:
Continuing Grant
Sublinear Algorithms for Approximating Probability Distributions
用于近似概率分布的次线性算法
- 批准号:
EP/L021749/1 - 财政年份:2014
- 资助金额:
$ 23.3万 - 项目类别:
Research Grant
相似海外基金
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
1855760 - 财政年份:2018
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733680 - 财政年份:2018
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
- 批准号:
1733742 - 财政年份:2017
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
- 批准号:
1733832 - 财政年份:2017
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733878 - 财政年份:2017
- 资助金额:
$ 23.3万 - 项目类别:
Standard Grant














{{item.name}}会员




