Recognition Theorems of Group Theory and Various Inverse Galois Problems

群论和各种逆伽罗瓦问题的识别定理

基本信息

  • 批准号:
    9732592
  • 负责人:
  • 金额:
    $ 5.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9732592 Abhyankar Various Recognition Theorems of Group Theory provide powerful tools for computing Galois groups. They also provide suggestive guidelines for constructing explicit equations with assigned Galois groups, i.e., for solving various Inverse Galois Problems. It is proposed to continue using this method to get information on the algebraic fundamental groups of algebraic and arithmetical varieties. Some of these Recognition Theorems are based on the Classification of Finite Simple Groups. Some others use the Classification of Polar Spaces. Still some others use the older techniques of finding Limits of Transitivity. Another fertile application area for these Recognition Theorems is in Hilbert's Thirteenth Problem about composite functions. Yet another such application area lies in the direction of Permutation Polynomials and Exceptional Polynomials. This research is in the combination of the fields of algebraic geometry and group theory. Although they are amongst the oldest parts of modern mathematics, both these fields have had a revolutionary flowering in the past fifty years. In its origin, algebraic geometry treated figures that could be defined in the plane by the simplest equations, namely polynomials. Likewise. group theory had its origin in the study of symmetries. Nowadays, both these fields make use of methods not only from algebra, but from analysis and topology, and conversely they are finding applications in those fields as well as in physics, theoretical computer science and robotics. Moreover, an interplay between algebraic geometry and group theory continues to enrich both these disciplines.
9732592 Abhyankar群论的各种识别定理为计算伽罗瓦群提供了强大的工具。它们也为构造带有指定伽罗瓦群的显式方程,即求解各种反伽罗瓦问题提供了启发性的指导。建议继续使用这种方法来获取代数和算术变量的代数基本群的信息。其中一些识别定理是基于有限简单群的分类。其他一些使用极空间分类。还有一些人使用旧的方法来寻找及物性极限。这些识别定理的另一个丰富的应用领域是希尔伯特关于复合函数的第十三问题。然而,另一个这样的应用领域在于置换多项式和例外多项式的方向。本研究是代数几何和群论领域的结合。虽然它们是现代数学中最古老的部分之一,但这两个领域在过去的50年里都有了革命性的发展。在其起源中,代数几何处理的图形可以用最简单的方程,即多项式,在平面上定义。同样。群论起源于对对称性的研究。如今,这两个领域不仅使用代数的方法,还使用分析和拓扑的方法,反过来,它们在这些领域以及物理学,理论计算机科学和机器人技术中也得到了应用。此外,代数几何和群论之间的相互作用继续丰富这两个学科。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shreeram Abhyankar其他文献

Reduction to multiplicity less thanp in ap-cyclic extension of a two dimensional regular local ring (p = characteristic of the residue field)
  • DOI:
    10.1007/bf01360724
  • 发表时间:
    1964-02-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shreeram Abhyankar
  • 通讯作者:
    Shreeram Abhyankar
Über die endliche Erzeugung der Fundamentalgruppe einer komplex-algebraischen Mannigfaltigkeit
  • DOI:
    10.1007/bf01352262
  • 发表时间:
    1960-08-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shreeram Abhyankar
  • 通讯作者:
    Shreeram Abhyankar
Concepts of order and rank on a complex space, and a condition for normality
  • DOI:
    10.1007/bf01360171
  • 发表时间:
    1960-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shreeram Abhyankar
  • 通讯作者:
    Shreeram Abhyankar
Uniformization of jungian local domains
  • DOI:
    10.1007/bf01371613
  • 发表时间:
    1965-08-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shreeram Abhyankar
  • 通讯作者:
    Shreeram Abhyankar
Uniformization inp-cyclic extensions of algebraic surfaces over ground fields of characteristicp
  • DOI:
    10.1007/bf01361177
  • 发表时间:
    1964-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Shreeram Abhyankar
  • 通讯作者:
    Shreeram Abhyankar

Shreeram Abhyankar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shreeram Abhyankar', 18)}}的其他基金

Recognition Theorems of Group Theory with Applications to Modular Galois Theory and Desingularization
群论的识别定理及其在模伽罗瓦理论和去奇异化中的应用
  • 批准号:
    9988166
  • 财政年份:
    2000
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algorithmic Algebraic Geometry
数学科学:算法代数几何
  • 批准号:
    9101424
  • 财政年份:
    1991
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algorithmic Algebraic Geometry
数学科学:算法代数几何
  • 批准号:
    8816286
  • 财政年份:
    1989
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Algebra and Algebraic Geometry
数学科学:代数和代数几何主题
  • 批准号:
    8500491
  • 财政年份:
    1985
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Algebra and Algebraic Geometry
数学科学:代数和代数几何主题
  • 批准号:
    8002900
  • 财政年份:
    1980
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Topics in Algebra and Algebraic Geometry
代数和代数几何专题
  • 批准号:
    7800947
  • 财政年份:
    1978
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
Topics in Algebra and Algebraic Geometry
代数和代数几何专题
  • 批准号:
    7509090
  • 财政年份:
    1975
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
  • 批准号:
    2336239
  • 财政年份:
    2024
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
  • 批准号:
    23K12978
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
  • 批准号:
    2247382
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
  • 批准号:
    23K12986
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
  • 批准号:
    2240063
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
  • 批准号:
    23KJ0673
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Limit Theorems in Dynamical Systems
动力系统中的极限定理
  • 批准号:
    2246983
  • 财政年份:
    2023
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了