Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
基本信息
- 批准号:2349868
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal involves basic fundamental mathematical research at the intersection of analytic function theory, harmonic analysis, and operator theory. Motivation to study these questions can be found in partial differential equations, which are fundamental to the study of science and engineering. The solution to a partial differential equation is frequently given by an integral operator, a Calderon-Zygmund operator, whose related properties can be used to deduce related properties of these partial differential equations. In general, studying these Calderon-Zygmund operators is challenging and one seeks to study their action on certain spaces of functions, by checking the behavior only on a simpler class of test functions. In analogy, this can be seen as attempting to understand a complicated musical score by simply understanding a simpler finite collection of pure frequencies. The proposed research is based on recent contributions made by the PI, leveraging the skills and knowledge developed through prior National Science Foundation awards. Through this proposal the PI will address open and important questions at the interface of analytic function theory, harmonic analysis, and operator theory. Resolution of questions in these areas will provide for additional lines of inquiry. Funds from this award will support a diverse group of graduate students whom the PI advises; helping to increase the national pipeline of well-trained STEM students for careers in academia, government, or industry.The research program of this proposal couples important open questions with the PI's past work. The general theme will be to use methods around ``testing theorems,'' called ``T1 theorems'' in harmonic analysis or the ``reproducing kernel thesis'' in analytic function theory and operator theory, to study questions that arise in analytic function theory, harmonic analysis, and operator theory. In particular, applications of the proof strategy of testing theorems will: (1) be used to characterize when Calderon-Zygmund operators are bounded between weighted spaces both for continuous and dyadic variants of these operators; (2) serve as motivation for a class of questions related to operators on the Fock space of analytic functions that are intimately connected to Calderon-Zygmund operators; and, (3) be leveraged to provide a method to study Carleson measures in reproducing kernel Hilbert spaces of analytic functions. Results obtained will open the door to other lines of investigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个建议涉及基本的基础数学研究的交集解析函数理论,调和分析,算子理论。研究这些问题的动机可以在偏微分方程中找到,这是科学和工程研究的基础。偏微分方程的解通常由积分算子给出,即Calderon-Zygmund算子,其相关性质可以用来推导这些偏微分方程的相关性质。一般来说,研究这些Calderon-Zygmund算子是具有挑战性的,人们试图通过只在一类简单的测试函数上检查其行为来研究它们在某些函数空间上的作用。类似地,这可以被看作是试图通过简单地理解一个更简单的纯频率的有限集合来理解一个复杂的乐谱。拟议的研究是基于PI最近的贡献,利用通过以前的国家科学基金会奖开发的技能和知识。通过这项建议,PI将解决解析函数理论,调和分析和算子理论接口的开放和重要问题。 解决这些领域的问题将提供更多的调查线索。 该奖项的资金将支持PI建议的多元化研究生群体;帮助增加受过良好训练的STEM学生在学术界,政府或工业界的职业生涯的国家管道。该提案的研究计划将重要的开放问题与PI过去的工作结合起来。 总的主题将是使用方法围绕"测试定理“,所谓的”T1定理“在调和分析或"再生核论文”在解析函数理论和算子理论,研究问题,出现在解析函数理论,调和分析和算子理论。 特别地,检验定理的证明策略的应用将:(1)用于刻画Calderon-Zygmund算子在加权空间之间有界的性质,无论是对于这些算子的连续变式还是并矢变式,(2)作为一类与Calderon-Zygmund算子密切相关的解析函数的Fock空间上的算子相关问题的动机;(3)提供了一种研究解析函数再生核Hilbert空间中Carleson测度的方法。 该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett Wick其他文献
Steven George Krantz (1951 -) Celebrates his 70th Birthday
- DOI:
10.1007/s11785-023-01480-3 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:0.800
- 作者:
Arni S. R. Srinivasa Rao;Siqi Fu;Gregory Knese;Kaushal Verma;Brett Wick - 通讯作者:
Brett Wick
Brett Wick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brett Wick', 18)}}的其他基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
- 批准号:
2230844 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Symmetry Parameter Analysis of Singular Integrals
奇异积分的对称参数分析
- 批准号:
2054863 - 财政年份:2021
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
- 批准号:
2000510 - 财政年份:2019
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
- 批准号:
1936503 - 财政年份:2019
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Applications of Harmonic Analysis to Riesz Transforms and Commutators beyond the Classical Settings
谐波分析在经典设置之外的 Riesz 变换和换向器中的应用
- 批准号:
1800057 - 财政年份:2018
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1500509 - 财政年份:2015
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
CAREER: An Integrated Proposal Based on The Corona Problem
职业:基于新冠问题的综合提案
- 批准号:
1603246 - 财政年份:2015
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
- 批准号:
1560955 - 财政年份:2015
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
The Corona Problem: Connections between Operator Theory, Function Theory and Geometry
电晕问题:算子理论、函数论和几何之间的联系
- 批准号:
1200994 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
相似海外基金
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for JSPS Fellows