Limit Theorems in Dynamical Systems
动力系统中的极限定理
基本信息
- 批准号:2246983
- 负责人:
- 金额:$ 43.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project develops methods to carry out precise computations of statistical quantities associated with chaotic behavior of deterministic dynamical systems. Deterministic systems with unstable behavior appear in a wide range of applications, ranging from atomic to planetary scales. In many cases the instability is caused by exponential divergence of nearby trajectories. Long time behavior of such systems cannot be predicted exactly unless the initial conditions are known precisely, and consequently it is necessary to use statistical descriptions of the orbits. The project also addresses simple models of mixed dynamical behavior where systems exhibit features associated with both regular and stochastic behaviors. Such models occur as paradigmatic examples explaining more complicated phenomena. In addition, the project provides opportunities for research training and mentoring of graduate students. The principal investigator will also disseminate results through lectures and expository writing.The project focuses on the statistical properties of dynamical systems. It consists of four parts. First, precise asymptotics in limit theorems for dynamical systems will be considered. Sharp limit theorem estimates have recently been shown by the principal investigator and others to have applications in dynamics. A local limit theorem for non-autonomous systems will be studied. The principal investigator plans to classify obstructions to classical asymptotic expansions, and to develop new tools applicable in cases where the classical expansions fail. A second topic to be considered is exponential mixing. Sharp limit theorems for exponentially mixing systems will be studied through an exploration of geometric structures in the associated phase space. Next, the principal investigator will study flexibility of statistical properties through the construction of dynamical systems with exotic properties. A final topic under consideration is averaging theory. The principal investigator has previously made several contributions to the study of averaging for systems with hyperbolic fast motion. These techniques will be investigated further with an eye towards extensions to the setting of quasi-periodic fast dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目开发方法,以进行精确计算与确定性动力系统的混沌行为相关的统计量。具有不稳定行为的确定性系统出现在从原子到行星尺度的广泛应用中。在许多情况下,不稳定性是由附近轨迹的指数发散引起的。除非精确地知道初始条件,否则不能精确地预测这类系统的长时间行为,因此有必要使用轨道的统计描述。该项目还涉及混合动力学行为的简单模型,其中系统表现出与规则和随机行为相关的特征。这些模型作为解释更复杂现象的范例出现。此外,该项目还为研究生的研究培训和指导提供了机会。主要研究者还将通过讲座和论文写作来传播研究结果。该项目侧重于动力系统的统计特性。全文共分四个部分。首先,将考虑动力系统极限定理的精确渐近性。尖锐极限定理估计最近已被证明的主要研究者和其他人有应用动力学。本文将研究非自治系统的一个局部极限定理。主要研究者计划对经典渐近展开式的障碍进行分类,并开发适用于经典展开式失败的情况的新工具。要考虑的第二个主题是指数混合。指数混合系统的锐极限定理将通过探索相空间中的几何结构来研究。接下来,首席研究员将通过构建具有奇异特性的动力系统来研究统计特性的灵活性。考虑的最后一个主题是平均理论。首席研究员以前作出了几项贡献的研究平均系统的双曲快速运动。这些技术将进一步调查,着眼于扩展到准周期快速dynamics.This奖项的设置反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Dolgopyat其他文献
Berry Esseen theorems for sequences of expanding maps
- DOI:
10.1007/s00440-025-01368-7 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:1.600
- 作者:
Dmitry Dolgopyat;Yeor Hafouta - 通讯作者:
Yeor Hafouta
Limit theorems for random walks on a strip in subdiffusive regimes
次扩散区域带上随机游走的极限定理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dmitry Dolgopyat;I. Goldsheid - 通讯作者:
I. Goldsheid
The visits to zero of a random walk driven by an irrational rotation
无理旋转驱动的随机游走到零的访问
- DOI:
10.1007/s11856-015-1186-4 - 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Artur Avila;Dmitry Dolgopyat;E. Duryev;O. Sarig - 通讯作者:
O. Sarig
Correction to: Flexibility of statistical properties for smooth systems satisfying the central limit theorem
- DOI:
10.1007/s00222-022-01137-6 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:3.600
- 作者:
Dmitry Dolgopyat;Changguang Dong;Adam Kanigowski;Péter Nándori - 通讯作者:
Péter Nándori
The central limit theorem and rate of mixing for simple random walks on the circle
圆上简单随机游走的中心极限定理和混合率
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Klaudiusz Czudek;Dmitry Dolgopyat - 通讯作者:
Dmitry Dolgopyat
Dmitry Dolgopyat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Dolgopyat', 18)}}的其他基金
Statistical Properties of Dynamical Systems
动力系统的统计特性
- 批准号:
1956049 - 财政年份:2020
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Equidistribution, Invariant Measures and Applications
均衡分布、不变测度及其应用
- 批准号:
1930145 - 财政年份:2019
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Limit Theorems in Dynamical Systems
动力系统中的极限定理
- 批准号:
1665046 - 财政年份:2017
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Limit Theorems in Dynamical Systems
动力系统中的极限定理
- 批准号:
1362064 - 财政年份:2014
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Limit Theorems in Dynamical Systems
动力系统中的极限定理
- 批准号:
1101635 - 财政年份:2011
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Chaos and Disorder in Mathematics and Physics Conference
数学和物理会议中的混沌与无序
- 批准号:
0454679 - 财政年份:2004
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Parameter Dependence in Weakly Hyperbolic Dynamical Systems
弱双曲动力系统中的参数依赖性
- 批准号:
0245359 - 财政年份:2003
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Structure theorems beyond Z-systems
Z 系统之外的结构定理
- 批准号:
2247331 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant