SGER: Dynamical Models of Gene Networks in Development.
SGER:发展中基因网络的动态模型。
基本信息
- 批准号:9732702
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-01-01 至 1999-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
O'Dell 9732702 The goals of this project are three-fold: To develop a mathematical framework and computer software for representing and solving differential equation models of gene networks, to assemble a minimal model of the segment polarity gene network of Drosophila melanogaster and to test and refine that model against results in the literature and laboratory experiments, adding components to the model as necessary. Molecular genetics has produced a growing wealth of data on a host of functionally important genes. These data present both an opportunity and a serious challenge to biologists seeking to explain developmental mechanisms. Most, and maybe all, developmentally important genes act within dynamic networks whose essential behaviors are determined by complex webs of interaction among their constituents. Because of their dynamic nature, these essential behaviors cannot be directly inferred from the simple arrow diagrams that biologists typically use to summarize their experiments. The resolution of the actual dynamic interactions occurring simultaneously within even very small networks into accurate predictions of overall network behavior is not possible without the use of computer tools. Thus, computer models offer a powerful and unique approach to analyzing the behavior of such complex dynamic networks. The goal of this proposal is to develop and illustrate a general computer modeling approach that can be generally used to study gene networks in many different contexts. The basis of this approach is to formulate equations describing how the concentration of each network constituent varies continuously in time as a function of its interactions within the network, and then use them to explore the network's behavior. The segment polarity gene network in Drosophila which establishes patterned cell fates across the cellular blastoderm will be used as a model.
O'Dell 9732702 该项目的目标有三个:开发用于表示和求解基因网络微分方程模型的数学框架和计算机软件,组装果蝇片段极性基因网络的最小模型,并根据文献和实验室实验的结果测试和完善该模型,根据需要向模型添加组件。 分子遗传学已经产生了关于许多功能重要基因的越来越丰富的数据。这些数据对于寻求解释发育机制的生物学家来说既是机遇也是严峻的挑战。大多数(也许是全部)对发育至关重要的基因在动态网络中发挥作用,其基本行为是由其成分之间复杂的相互作用网络决定的。由于其动态性质,这些基本行为不能从生物学家通常用来总结实验的简单箭头图直接推断出来。如果不使用计算机工具,就不可能将即使在非常小的网络中同时发生的实际动态交互解析为对整体网络行为的准确预测。因此,计算机模型提供了一种强大且独特的方法来分析此类复杂动态网络的行为。该提案的目标是开发和说明一种通用计算机建模方法,该方法可普遍用于研究许多不同背景下的基因网络。这种方法的基础是制定方程,描述每个网络成分的浓度如何随时间连续变化,作为其在网络内相互作用的函数,然后使用它们来探索网络的行为。果蝇中的片段极性基因网络将被用作模型,该网络在细胞胚盘中建立了模式化的细胞命运。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garrett Odell其他文献
Garrett Odell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garrett Odell', 18)}}的其他基金
Using Simulations to Explore Genetic Networks
使用模拟探索遗传网络
- 批准号:
0090835 - 财政年份:2001
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Evolvability of Developmental Mechanisms Workshop
发育机制的进化性研讨会
- 批准号:
0086334 - 财政年份:2000
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Using Simulations to Explore Genetic Networks
使用模拟探索遗传网络
- 批准号:
9817081 - 财政年份:1999
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Graduate Research Traineeship Program in Mathematical Biology
数学生物学研究生研究实习计划
- 批准号:
9256532 - 财政年份:1993
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Theories of Biological Motion and Pattern, and Their Control
数学科学:生物运动和模式及其控制理论
- 批准号:
8301460 - 财政年份:1983
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Theories of Biological Motion and Pattern, and Their Control
生物运动和模式理论及其控制
- 批准号:
8102640 - 财政年份:1981
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Theories of Biological Motion and Pattern, and Their Control
生物运动和模式理论及其控制
- 批准号:
7903548 - 财政年份:1979
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
相似海外基金
EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
- 批准号:
10665213 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Automatic derivation of dynamical models from temporal network data using a graph rewriting system
使用图重写系统从时态网络数据自动推导动态模型
- 批准号:
23H03414 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Advancing Measurements of Supermassive Black Holes with Triaxial Stellar-Dynamical Models
合作研究:利用三轴恒星动力学模型推进超大质量黑洞的测量
- 批准号:
2206307 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Advancing Measurements of Supermassive Black Holes with Triaxial Stellar-Dynamical Models
合作研究:利用三轴恒星动力学模型推进超大质量黑洞的测量
- 批准号:
2206219 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Network models of cortical and subcortical interactions for dynamical control of decision making
CRCNS 研究提案:用于决策动态控制的皮质和皮质下相互作用的网络模型
- 批准号:
2207895 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Continuing Grant
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Infinitely Deep Neural Models and Dynamical Systems
无限深度神经模型和动力系统
- 批准号:
21J14546 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development and validation of particle models for DEM simulations of the dynamical behavior of saturated soils
用于饱和土壤动态行为 DEM 模拟的粒子模型的开发和验证
- 批准号:
522310-2017 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Collaborative Research and Development Grants
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




