EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
基本信息
- 批准号:10665213
- 负责人:
- 金额:$ 48.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2031-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntiepileptic AgentsBiological MarkersBrainClinicalDerivation procedureDevicesDiagnosisDiseaseDrug resistanceElectric Stimulation TherapyElectrical Stimulation of the BrainElectroencephalographyEpilepsyExcisionFDA approvedFamilyGleanHospital CostsKnowledgeLength of StayMalignant neoplasm of lungMeasuresOperative Surgical ProceduresOutcomePainPathologicPatientsPersonsPharmaceutical PreparationsPharmacotherapyPhysiologicalPositioning AttributePropertyRecurrenceScalp structureSeizuresSourceTechnologyWomanWorkaccurate diagnosisalternative treatmentburden of illnesscohortcomputerized toolsdesigndrug efficacyeffective therapyimprovedindexingmalignant breast neoplasmmennervous system disordernetwork modelsnoveloptimal treatmentspatient populationprogramsrapid diagnosisside effectsocial stigmastemsuccessvagus nerve stimulation
项目摘要
SUMMARY
Epilepsy is a neurological disorder that is marked by sudden recurrent episodes of abnormal electrical activity in
the brain, known as seizures. This disease plagues more than 60 million people globally, with the same burden
of disease as breast cancer in women and lung cancer in men. First line of treatment for patients with epilepsy
are anti-epileptic drugs (AEDs). If AEDs are not effective in suppressing seizures, then patients may consider
alternative treatments including surgical resection of the epileptogenic zone in the brain, electrical brain
stimulation, or vagus nerve stimulation. With several treatment options available, one may think that epilepsy is
under control. However, this is far from true. Accurately diagnosing epilepsy and then finding an effective
treatment can take years to a lifetime, during which patients and families suffer from the stigma of epilepsy, side-
effects of ineffective AEDs, extensive and costly hospital stays, poor outcomes of irreversible surgical treatment,
and/or less than satisfactory stimulation therapies whose efficacies are physiologically unmeasurable. We
propose a program to establish novel EEG biomarkers and computational tools that will enable rapid
and accurate diagnosis of epilepsy followed by a rapid path to an effective treatment. Such a program
entails major advances in conceptual knowledge of how epileptic cortical networks behave and change during
stimulation treatment that will be gleaned from dynamic network modeling (DNM) of EEG. There are many
challenges with diagnosing and treating epilepsy that unfolds as one considers the clinical workflow beginning
with a patient’s first seizure. First an accurate diagnosis of epilepsy can take months to years, where scalp EEG
can be leveraged to confirm diagnosis. However, the gold standard is to look for EEG abnormalities that are
indicators of epilepsy (e.g., spikes), which are often not captured or misread. Second, it takes months to years
to find effective AED treatment as there is no physiological measure of drug efficacy. For these two pain points,
we will leverage a new biomarker that our lab discovered from intracranial EEG called the source-sink metric
which is designed to capture pathological network properties that are always present only in epilepsy patients.
For 30% of the patient population, no AEDs work, and their alternative treatments include surgical treatment of
the epileptogenic zone (EZ) and electrical stimulation therapy. However surgical success rates for drug resistant
patients averages 50%, and there is currently no measure of efficacy of neurostimulation treatment, leaving half
of treated patients nonresponsive. For these drug resistant patients, we will leverage the source-sink index,
derived from DNMs and EEG, to help more accurately localize the EZ to improve surgical success rates, and to
track efficacy of stimulation treatment from the FDA approved RNS device. The proposed R35 will address major
challenges with novel EEG biomarkers stemming from dynamic network models. Is successful, the program will
lead to breakthrough technologies enabling getting to accurate diagnosis and optimal treatment for all epilepsy
patients more rapidly (from years to weeks), including the underserved drug-resistant cohort.
概括
癫痫是一种神经系统疾病,其特征是突然复发性发作异常的电活动。
大脑,称为癫痫发作。这种疾病困扰着全球超过6000万人,负担相同
疾病作为女性的乳腺癌和男性肺癌。癫痫患者的第一道治疗
是抗癫痫药(AED)。如果AED在抑制癫痫发作方面无效,则可以考虑
替代治疗,包括大脑中癫痫发射区的手术切除,电脑
刺激或迷走神经刺激。有了几种治疗选择,人们可能会认为癫痫是
在控制之下。但是,这远非如此。准确诊断癫痫,然后找到有效
治疗可能需要数年的时间,在此期间,患者和家庭患有癫痫,侧面的污名
无效的AED的影响,广泛且昂贵的住院,不可逆的手术治疗结果不佳,
和/或少于满意度工厂刺激疗法,其有效性在物理上是无法衡量的。我们
提出一个计划,以建立新颖的脑电图生物标志物和计算工具,以使快速
并准确诊断癫痫,然后是有效治疗的快速途径。这样的程序
在概念上了解癫痫性皮质网络如何行事和变化,在
EEG的动态网络建模(DNM)将收集的刺激处理。有许多
诊断和治疗癫痫的挑战,它认为是临床工作流程的开始
患者的第一次癫痫发作。首先,准确诊断癫痫可能需要数月到几年,头皮脑
可以利用以确认诊断。但是,黄金标准是寻找脑电图异常
癫痫的指标(例如,尖峰),通常不会被捕获或错过。其次,需要几个月到几年
找到有效的AED治疗,因为没有药物效率的物理测量。对于这两个疼痛点,
我们将利用我们的实验室从颅内脑电图中发现的一种新的生物标志物,称为源 - 链接指标
旨在捕获仅在癫痫患者中始终存在的病理网络特性。
对于30%
癫痫发作区(EZ)和电刺激疗法。但是药物抗药性的手术成功率
患者平均为50%,目前尚无神经刺激治疗效率的测量,一半
治疗的患者无反应。对于这些抗药性患者,我们将利用源源指数,
源自DNM和EEG,以帮助更准确地定位EZ以提高手术成功率,并
跟踪FDA批准的RNS设备的刺激处理效率。拟议的R35将针对专业
源于动态网络模型的新型脑电图生物标志物的挑战。成功,程序将
导致突破性技术使所有癫痫的准确诊断和最佳治疗
患者(从几年到几周)更快,包括服务不足的耐药队列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sridevi V. Sarma其他文献
Sridevi V. Sarma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sridevi V. Sarma', 18)}}的其他基金
Using Feedback Control to Suppress Seizure Genesis in Epilepsy
使用反馈控制抑制癫痫发作
- 批准号:
9920327 - 财政年份:2019
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10611557 - 财政年份:2018
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10352692 - 财政年份:2018
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10385747 - 财政年份:2018
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
9898497 - 财政年份:2018
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: Towards Pain Control: Synergizing Computational and Biological Approaches
CRCNS:迈向疼痛控制:协同计算和生物学方法
- 批准号:
9323301 - 财政年份:2016
- 资助金额:
$ 48.01万 - 项目类别:
CRCNS: Towards Pain Control: Synergizing Computational and Biological Approaches
CRCNS:迈向疼痛控制:协同计算和生物学方法
- 批准号:
9242340 - 财政年份:2016
- 资助金额:
$ 48.01万 - 项目类别:
相似国自然基金
基于肠脑轴调控的新型含三唑组胺H3受体拮抗剂多靶点协同抗癫痫作用机制研究
- 批准号:82360712
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Sigma-1受体别构调节剂SOMCL-668抗癫痫作用及其机制的研究
- 批准号:81402905
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCN8A encephalopathy: disease mechanisms and treatment
SCN8A 脑病:疾病机制和治疗
- 批准号:
10586642 - 财政年份:2023
- 资助金额:
$ 48.01万 - 项目类别:
Development of an intraoral device for therapeutic drug monitoring of anti-epileptic drugs
开发用于抗癫痫药物治疗药物监测的口内装置
- 批准号:
10452435 - 财政年份:2022
- 资助金额:
$ 48.01万 - 项目类别:
Development of an intraoral device for therapeutic drug monitoring of anti-epileptic drugs
开发用于抗癫痫药物治疗药物监测的口内装置
- 批准号:
10609919 - 财政年份:2022
- 资助金额:
$ 48.01万 - 项目类别:
Bridging the micro and macro scales of seizure dynamics
连接癫痫动力学的微观和宏观尺度
- 批准号:
10574151 - 财政年份:2022
- 资助金额:
$ 48.01万 - 项目类别:
Chronic Focal and Diffuse Traumatic Brain Injury: Mechanisms Underlying Epileptogenesis and Progressive Dysfunction
慢性局灶性和弥漫性创伤性脑损伤:癫痫发生和进行性功能障碍的机制
- 批准号:
10710035 - 财政年份:2020
- 资助金额:
$ 48.01万 - 项目类别: