Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
基本信息
- 批准号:RGPIN-2019-06131
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My NSERC research program focuses on developing efficient statistical and computational methodologies for problems in genetics and dynamical models arising from various disciplines such as epidemiology and pharmacokinetics.
My first research theme aims to tackle challenging problems in fields related to computational and statistical genetics/genomics. I aim to develop scalable statistical inference methodologies for phylogenetics, where trees are used to describe the evolutionary relationship among biological sequences. The development of these methods will allow inference for more complex statistical models in the contexts related to phylogenetics, such as the reconstruction of tumor trees from single-cell sequencing data, phylogenetic networks which model gene flow, and phylodynamics that involves both the phylogenetic tree and epidemiological models. I will develop various complex evolutionary models and efficient Bayesian model selection methods. The proposed research will allow evolutionary biologists and cancer researchers to conduct statistical inference more efficiently and accurately when facing large modern microbial and cancer cell sequencing datasets.
I will also develop efficient Bayesian inference for imaging genetics, which involves large-scale neuroimaging data and high-dimensional genetic data. Motivated by data from the Alzheimer's Disease (AD) Neuroimaging Initiative, I will investigate the influence of genetic variation on brain structure and AD status using various statistical models and computational methods such as Bayesian regression, clustering, network modeling, Markov chain Monte Carlo and variational Bayes. I will develop functional principal component analysis methods for dimension reduction and estimating state-space models for longitudinal studies in the context of imaging genetics. This research will help to develop personalized medicine for treating AD.
My second research theme focuses on statistical inference for dynamical models expressed in the form of differential equations (DEs). They are to understand complex dynamical systems in areas such as neuroscience and physics. DE parameters usually have scientific interpretations, but their values are often unknown. In addition, the available data are often noisy and partially observed. My goal is to model real-world applications using DEs and to develop novel methodologies to provide accurate and robust parameter estimates while keeping computational costs low. I will focus on the inference of high-dimensional ordinary differential equations and complex stochastic differential equations.
My research will enable more efficient and accurate statistical inference for large-scale data. Not only will the proposed research support the training of highly qualified personnel, but it will also result in publicly available software packages. The proposed methods are transferable to many other fields of natural science and engineering where similar models are used.
我的NSERC研究项目侧重于开发有效的统计和计算方法,以解决遗传学和动力学模型中出现的问题,这些问题来自不同的学科,如流行病学和药物动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Liangliang其他文献
Novel optical add-drop multiplexer based on dual racetrack resonators
基于双跑道谐振器的新型光学分插复用器
- DOI:
10.1016/j.optcom.2012.01.056 - 发表时间:
2012-05 - 期刊:
- 影响因子:2.4
- 作者:
Zhang, Xiaoguang;Wang, Yue;An, Junming;Zhang, Jiashun;Wang, Hongjie;Li, Jianguang;Wang, Liangliang;Hu, Xiongwei;Wu, Yu;a - 通讯作者:
a
Clinical and virological features of asymptomatic and mild symptomatic patients with SARS-CoV-2 Omicron infection at Shanghai Fangcang shelter hospital.
- DOI:
10.1002/iid3.1033 - 发表时间:
2023-09 - 期刊:
- 影响因子:3.2
- 作者:
Zhang, Lin;Kang, Xiaoyu;Wang, Liangliang;Yan, Rui;Pan, Yanglin;Wang, Jiuping;Chen, Zhangqian - 通讯作者:
Chen, Zhangqian
Experimental Study on the Interface Characteristics of Reinforced Crushed Rock Cushion Layer Based on Direct Shear Tests.
- DOI:
10.3390/ma16175858 - 发表时间:
2023-08-26 - 期刊:
- 影响因子:3.4
- 作者:
Wang, Liangliang;Zhu, Qianlong;Jia, Yan;Li, Hu - 通讯作者:
Li, Hu
Theaflavin-3,3'-Digallate Inhibits Erastin-Induced Chondrocytes Ferroptosis via the Nrf2/GPX4 Signaling Pathway in Osteoarthritis.
- DOI:
10.1155/2022/3531995 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xu, Chao;Ni, Su;Xu, Nanwei;Yin, Guangrong;Yu, Yunyuan;Zhou, Baojun;Zhao, Gongyin;Wang, Liangliang;Zhu, Ruixia;Jiang, Shijie;Wang, Yuji - 通讯作者:
Wang, Yuji
Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor.
- DOI:
10.1016/j.isci.2022.104643 - 发表时间:
2022-07-15 - 期刊:
- 影响因子:5.8
- 作者:
Zhang, Wenxin;Wang, Liangliang;Zhao, Yinjiao;Wang, Yufei;Chen, Chaoyang;Hu, Yu;Zhu, Yuanxiang;Sun, Hao;Cheng, Ying;Sun, Qinmiao;Zhang, Jian;Chen, Dahua - 通讯作者:
Chen, Dahua
Wang, Liangliang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Liangliang', 18)}}的其他基金
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced Monte Carlo Methods for Complex Statistical Models
适用于复杂统计模型的高级蒙特卡罗方法
- 批准号:
435713-2013 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Statistical inferences for estimating dynamic models
估计动态模型的统计推断
- 批准号:
362651-2008 - 财政年份:2010
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242085 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
- 批准号:
2232547 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
- 批准号:
RGPIN-2019-05688 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
- 批准号:
10411629 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical and Computational Tools for Analyzing High-Dimensional Heterogeneous Data
用于分析高维异构数据的统计和计算工具
- 批准号:
2210907 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant














{{item.name}}会员




