Topics in Complexity Theory
复杂性理论主题
基本信息
- 批准号:9732922
- 负责人:
- 金额:$ 20.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For over thirty years, computational complexity theory has provided the computer science community with a theoretical backbone from which one can understand the power of computation. Computational complexity has produced the tools that allows one to understand what likely can and cannot be computed in a reasonable amount of time and memory. This research will continue this tradition. While this research will look at a wide range of problems in many different areas of computational complexity it will focus on two interesting directions. The project first looks at a new model of computation, quantum computing. Computer scientists have recently discovered the powerful applications of the cancellation effect of quantum physics. Though these quantum computers do not yet exist, nice theoretical models of these machines allow study of their complexity. The research will look at ways to apply the cancellation effects in the well-studied area of counting complexity to help the understanding of the complexity of quantum computation. The research will also embark on a more ambitious plan of attempting complexity class separation, one of the most important and least successful directions in the area. In particular, the research will try to show languages in computable in nondeterministic polynomial time, such as the famous traveling salesman problem, cannot be computable in (logarithmic) amount of space. The research well use tools recently developed by the PI of simulating space and time by alternation and applying Post's program of looking at properties of these and other classes. By understanding the relationship among complexity classes, one can better understand the nature of computation and provide the necessary directions one needs to solve problems on various models of computation. This research will help strengthen the theoretical foundations from which computer science stands.
三十多年来,计算复杂性理论为计算机科学界提供了一个理论支柱,人们可以从中了解计算的力量。计算的复杂性已经产生了一些工具,使人们能够理解在合理的时间和内存内可以计算什么,不可能计算什么。这项研究将延续这一传统。虽然这项研究将着眼于许多不同计算复杂性领域的广泛问题,但它将专注于两个有趣的方向。该项目首先着眼于一种新的计算模式--量子计算。计算机科学家最近发现了量子物理抵消效应的强大应用。尽管这些量子计算机还不存在,但这些机器的良好理论模型可以让人们研究它们的复杂性。这项研究将寻找在计算复杂性这一研究得很好的领域应用抵消效应的方法,以帮助理解量子计算的复杂性。这项研究还将启动一项更雄心勃勃的计划,尝试复杂性类别分离,这是该领域最重要但最不成功的方向之一。特别是,这项研究将试图说明语言在非确定的多项式时间内是可计算的,例如著名的旅行商问题,在(对数)空间中是不能计算的。研究很好地利用了PI最近开发的工具,即通过交替来模拟空间和时间,并应用Post的程序来查看这些和其他类的性质。通过了解复杂类之间的关系,可以更好地理解计算的本质,并提供解决各种计算模型问题所需的必要方向。这项研究将有助于加强计算机科学的理论基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lance Fortnow其他文献
A tight lower bound for restricted pir protocols
- DOI:
10.1007/s00037-006-0208-3 - 发表时间:
2006-05-01 - 期刊:
- 影响因子:1.000
- 作者:
Richard Beigel;Lance Fortnow;William Gasarch - 通讯作者:
William Gasarch
Separability and one-way functions
- DOI:
10.1007/s00037-002-0173-4 - 发表时间:
2002-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Lance Fortnow;John D. Rogers - 通讯作者:
John D. Rogers
Inseparability and Strong Hypotheses for Disjoint NP Pairs
- DOI:
10.1007/s00224-011-9326-7 - 发表时间:
2011-04-14 - 期刊:
- 影响因子:0.400
- 作者:
Lance Fortnow;Jack H. Lutz;Elvira Mayordomo - 通讯作者:
Elvira Mayordomo
Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?
- DOI:
10.1007/s00224-008-9160-8 - 发表时间:
2008-12-17 - 期刊:
- 影响因子:0.400
- 作者:
Harry Buhrman;Lance Fortnow;Michal Koucký;John D. Rogers;Nikolay Vereshchagin - 通讯作者:
Nikolay Vereshchagin
The power of adaptiveness and additional queries in random-self-reductions
- DOI:
10.1007/bf01202287 - 发表时间:
1994-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Joan Feigenbaum;Lance Fortnow;Carsten Lund;Daniel Spielman - 通讯作者:
Daniel Spielman
Lance Fortnow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lance Fortnow', 18)}}的其他基金
EAGER: Bounding Rationality by Computational Complexity
EAGER:计算复杂性限制理性
- 批准号:
1255900 - 财政年份:2012
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
TC: Small: Countering Location Spoofing Attacks: Multi-Model Architecture with Privacy-Enhancing Techniques
TC:小:反击位置欺骗攻击:采用隐私增强技术的多模型架构
- 批准号:
1115375 - 财政年份:2011
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
ICES: Small: Collaborative Research: Algorithms and Mechanisms for Pricing, Influencing Dynamics, and Economic Optimization
ICES:小型:协作研究:定价、影响动态和经济优化的算法和机制
- 批准号:
1101283 - 财政年份:2011
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Probabilistic Computation and Interactive Proof Systems
概率计算和交互式证明系统
- 批准号:
9009936 - 财政年份:1990
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 20.4万 - 项目类别:
Continuing Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Research Grant
Non-regular complexity theory
非正则复杂性理论
- 批准号:
23K10976 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
- 批准号:
2310426 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Continuing Grant
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
- 批准号:
2302375 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
- 批准号:
RGPIN-2021-03036 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Discovery Grants Program - Individual
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
- 批准号:
RGPAS-2021-00032 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
SHF: Small: Data Movement Complexity: Theory and Optimization
SHF:小型:数据移动复杂性:理论与优化
- 批准号:
2217395 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Optimization, Complexity, Algebra and Invariant Theory
最优化、复杂性、代数和不变理论
- 批准号:
RGPIN-2020-04599 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




