Instance Compression

实例压缩

基本信息

  • 批准号:
    0829754
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

Can one efficiently compress search problems with small witnesses into problems whose size depends on the length of the instances? Recent results have given strong negative evidence, for example, that one cannot efficiently map the problem of finding a clique of size k to a problem of size polynomial in k. These question has surprising applications to parameterized complexity, cryptography, probabilistic proof systems and structural complexity.This project will look to extend these results to a number of different directions including showing similar results for probabilistic compression which seem to require new breakthroughs in pseudorandom generators. Also can ever compress a function f that depends on m instances of an NP problem of size n to a single instance of size polynomial in n where the AND function seems to be the major barrier. Finally this project will explore new applications of this line of research as well as other related topics in computational complexity.While this proposal takes a theoretical approach to instance compression, in the long-term continued research in complexity will help focus efforts when trying to tackle difficult computational problems that arise in practice. This project explore these problems with graduate students as part of their thesis research. Research from this project will be desseminated through conference and invited presentations and publications in conferences, journals and on the Internet.
一个有效地压缩搜索问题与小证人的问题,其大小取决于实例的长度?最近的结果给出了强有力的负面证据,例如,人们不能有效地将找到大小为k的团的问题映射为k中的大小多项式的问题。 这些问题在参数化复杂性、密码学、概率证明系统和结构复杂性等方面有着令人惊讶的应用。本项目将把这些结果扩展到许多不同的方向,包括在概率压缩方面显示类似的结果,这似乎需要伪随机生成器的新突破。也可以将依赖于大小为n的NP问题的m个实例的函数f压缩为大小为n的多项式的单个实例,其中AND函数似乎是主要障碍。最后,本项目将探索这一研究领域的新应用以及计算复杂性的其他相关主题。虽然本项目对实例压缩采取了理论方法,但从长远来看,对复杂性的持续研究将有助于在尝试解决实践中出现的困难计算问题时集中精力。本计画将与研究生探讨这些问题,作为他们论文研究的一部分。该项目的研究将通过会议和邀请演讲以及在会议、期刊和互联网上发表论文来进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lance Fortnow其他文献

A tight lower bound for restricted pir protocols
  • DOI:
    10.1007/s00037-006-0208-3
  • 发表时间:
    2006-05-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Richard Beigel;Lance Fortnow;William Gasarch
  • 通讯作者:
    William Gasarch
Separability and one-way functions
  • DOI:
    10.1007/s00037-002-0173-4
  • 发表时间:
    2002-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Lance Fortnow;John D. Rogers
  • 通讯作者:
    John D. Rogers
Inseparability and Strong Hypotheses for Disjoint NP Pairs
  • DOI:
    10.1007/s00224-011-9326-7
  • 发表时间:
    2011-04-14
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Lance Fortnow;Jack H. Lutz;Elvira Mayordomo
  • 通讯作者:
    Elvira Mayordomo
Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?
  • DOI:
    10.1007/s00224-008-9160-8
  • 发表时间:
    2008-12-17
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Harry Buhrman;Lance Fortnow;Michal Koucký;John D. Rogers;Nikolay Vereshchagin
  • 通讯作者:
    Nikolay Vereshchagin
The power of adaptiveness and additional queries in random-self-reductions
  • DOI:
    10.1007/bf01202287
  • 发表时间:
    1994-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Joan Feigenbaum;Lance Fortnow;Carsten Lund;Daniel Spielman
  • 通讯作者:
    Daniel Spielman

Lance Fortnow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lance Fortnow', 18)}}的其他基金

Instance Compression
实例压缩
  • 批准号:
    1338274
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Bounding Rationality by Computational Complexity
EAGER:计算复杂性限制理性
  • 批准号:
    1255900
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TC: Small: Countering Location Spoofing Attacks: Multi-Model Architecture with Privacy-Enhancing Techniques
TC:小:反击位置欺骗攻击:采用隐私增强技术的多模型架构
  • 批准号:
    1115375
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research: Algorithms and Mechanisms for Pricing, Influencing Dynamics, and Economic Optimization
ICES:小型:协作研究:定价、影响动态和经济优化的算法和机制
  • 批准号:
    1101283
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Topics in Complexity Theory
复杂性理论主题
  • 批准号:
    9732922
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Presidential Faculty Fellow
总统教员研究员
  • 批准号:
    9253582
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probabilistic Computation and Interactive Proof Systems
概率计算和交互式证明系统
  • 批准号:
    9009936
  • 财政年份:
    1990
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
  • 批准号:
    2404740
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
  • 批准号:
    2415440
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Near Lossless Dense Light Field Compression Using Generalized Neural Radiance Field
使用广义神经辐射场的近无损密集光场压缩
  • 批准号:
    24K20797
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research hot cell with active air compression and cool down system
研究具有主动空气压缩和冷却系统的热室
  • 批准号:
    518282844
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Major Research Instrumentation
Prediction of Sticking Potential for Continuous Direct Compression
连续直接压缩粘着潜力的预测
  • 批准号:
    2891745
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
CSR: Small: CONCERT: Designing Scalable Communication Runtimes with On-the-fly Compression for HPC and AI Applications on Heterogeneous Architectures
CSR:小型:CONCERT:为异构架构上的 HPC 和 AI 应用程序设计具有动态压缩的可扩展通信运行时
  • 批准号:
    2312927
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
  • 批准号:
    2313124
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了