CAREER: Large-scale convex optimization with applications to VLSI and control systems design
职业:大规模凸优化及其在 VLSI 和控制系统设计中的应用
基本信息
- 批准号:9733450
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9733450VandenbergheThe project is devoted to research and teaching in the area of optimization applied to computer-aided design and electrical engineering. The research component focuses on recent interior-point methods for nonlinear convex optimization, and their application to VLSI and control systems design. These new optimization methods generalize similar interior-point methods for linear programming (LP) that were developed in the eighties and that have been used with great success in practice. Their recent extension to nonlinear convex optimization, and to the semidefinite programming (SDP) problem in particular, has had immediate practical and theoretical impact in several fields, notably control theory and combinatorial optimization.In control, it has been observed that various analysis and synthesis problems can be formulated as semidefinite programming problems, and hence numerically solved with great efficiency. There has been intensive research on identifying control problems that can be cast as SDPs, as well as rapid progress in the area of interior-point methods for solving those problems. As a result of this activity, several software implementations have become available, which have proven useful for small and medium-sized problems. The proposed research aims at developing more powerful general-purpose codes that exploit the problems structure in the SDPs encountered in control, and are capable of solving large-sclale problems. This would significantly extend the practical use of linear matrix inequality techniques in computer-aided control system design.À Wire and gate sizing via semidefinite programming. The objective here is to develop, implement, and test a new method for sizing circuits to which the conventional delay optimization techniques, which are based on the Elmore delay, do not apply. This includes circuits with a non-tree topology, e.g., clock distribution meshes, and circuits with coupling capacitors, e.g., due to coupling between interconnect wires.À Placement via nonlinear convex optimization, in particular timing-driven placement and placement combined with gate sizing. New methods for nonlinear convex optimization make it possible to use more complex cost functions and to handle new types of constraints, at a cost comparable to existing techniques.À Circuit partitioning via semidefinite programming. Here the objective is to analyze and test the use of semidefinite programming in spectral partitioning methods for various NP-hard circuit partitioning problems. Spectral partitioning methods are heuristics that use a relaxation solved via the eigenvalue decomposition of the Laplacian matrix associated with the circuit. Interior-point methods make it possible to efficiently optimize this special bound over a family of matrices, and hence to obtain a better heuristic.The education component of the project involves the development of a sequence of graduate courses in optimization for engineering students, covering linear and convex programming, large-scale and combinatorial optimization, dynamic programming, and graph optimization.***
9733450 Vandenberghe该项目致力于计算机辅助设计和电气工程优化领域的研究和教学。 研究部分集中在最近的非线性凸优化的邻域点方法,以及它们在超大规模集成电路和控制系统设计中的应用。 这些新的优化方法推广了类似的边界点法线性规划(LP),在八十年代开发的,并已在实践中取得了巨大的成功。 它们最近扩展到非线性凸优化,特别是半定规划(SDP)问题,在控制理论和组合优化等领域产生了直接的实际和理论影响。在控制中,人们已经观察到各种分析和综合问题都可以用半定规划问题表示,因此可以高效地数值求解。 已经有了深入的研究,以确定控制问题,可以铸造为SDP,以及在该地区的快速进展,在解决这些问题的邻域点的方法。 由于这项活动,已经有几个软件实现,这已被证明是有用的小型和中型的问题。 拟议的研究旨在开发更强大的通用代码,利用在控制中遇到的SDP的问题结构,并能够解决大规模的问题。 这将极大地扩展线性矩阵不等式技术在计算机辅助控制系统设计中的实际应用。 这里的目标是开发,实施和测试一种新的方法,用于调整电路的传统的延迟优化技术,这是基于埃尔默延迟,不适用。 这包括具有非树形拓扑的电路,例如,时钟分配网,以及带有耦合电容器的电路,例如,通过非线性凸优化来优化布局,特别是时序驱动布局和结合栅极尺寸的布局。 非线性凸优化的新方法使得使用更复杂的成本函数和处理新类型的约束成为可能,其成本与现有技术相当。 在这里,我们的目标是分析和测试使用半定规划的频谱划分方法的各种NP难电路划分问题。 频谱划分方法是使用松弛的算法,该松弛通过与电路相关联的拉普拉斯矩阵的特征值分解来求解。 内点法可以有效地优化矩阵族上的这个特殊界,从而获得更好的启发式。该项目的教育部分包括为工程专业学生开发一系列优化研究生课程,涵盖线性和凸规划、大规模和组合优化、动态规划和图优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lieven Vandenberghe其他文献
A tutorial on geometric programming
- DOI:
10.1007/s11081-007-9001-7 - 发表时间:
2007-04-10 - 期刊:
- 影响因子:1.700
- 作者:
Stephen Boyd;Seung-Jean Kim;Lieven Vandenberghe;Arash Hassibi - 通讯作者:
Arash Hassibi
Comparison of Two Structure-Exploiting Optimization Algorithms for Integral Quadratic Constraints
- DOI:
10.1016/s1474-6670(17)35663-x - 发表时间:
2003-06-01 - 期刊:
- 影响因子:
- 作者:
Ragnar Wallin;Anders Hansson;Lieven Vandenberghe - 通讯作者:
Lieven Vandenberghe
Lieven Vandenberghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lieven Vandenberghe', 18)}}的其他基金
Conic optimization methods for control, system identification, and signal processing
用于控制、系统辨识和信号处理的圆锥优化方法
- 批准号:
1509789 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Convex optimization methods for system identification and graphical modeling of time series
系统辨识和时间序列图形建模的凸优化方法
- 批准号:
1128817 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Interior-point algorithms for conic optimization with sparse matrix cone constraints
具有稀疏矩阵圆锥约束的圆锥优化的内点算法
- 批准号:
1115963 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Large-scale semidefinite programming algorithms and software for control, signal processing and system identification
用于控制、信号处理和系统辨识的大规模半定编程算法和软件
- 批准号:
0824003 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Semidefinite programming algorithms for convex optimization over nonnegative polynomials with applications in control and signal processing.
用于非负多项式凸优化的半定规划算法及其在控制和信号处理中的应用。
- 批准号:
0524663 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
- 批准号:
2239566 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant