Intrinsic ellipticity correlations between galaxies

星系之间的固有椭圆率相关性

基本信息

项目摘要

The next generation of weak lensing surveys will aim to constrain the cosmological parameters to an accuracy of a few percent, in particular they will measure the dark energy equation of state parameter and its time evolution to very high accuracy. In order to reach this accuracy, one needs a very good control of systematics, most importantly of the photometric redshift estimation of the lensed galaxies, in particular for tomographic measurements, and of intrinsic ellipticity correlations, which mimick the weak lensing signal. These intrinsic alignments are induced by the correlations between angular momenta of neighbouring galaxies and have been shown to affect the estimation of parameters significantly. The central goal of this project is to improve the understanding of ellipticity alignments, which are related to the tidal field of the large-scale structure by angular momentum models, by deriving higher-order correlation functions. Furthermore, we aim to investigate the feasibility of density field reconstructions using intrinsic ellipticity correlations, which were shown to dominate at low redshift over the weak lensing induced ones.
下一代弱透镜测量的目标是将宇宙学参数的精度限制在几个百分点,特别是它们将测量暗能量状态方程参数及其时间演化到非常高的精度。为了达到这一精度,人们需要很好地控制系统学,最重要的是对透镜星系的光度红移估计,特别是层析测量,以及模仿微弱透镜信号的本征椭圆度关联。这些内禀排列是由相邻星系角动量之间的相关性引起的,并已被证明对参数的估计有很大影响。这个项目的中心目标是通过推导高阶关联函数,通过角动量模型改善对椭圆度排列的理解,该排列与大尺度结构的潮汐场有关。此外,我们的目标是研究利用内禀椭圆度关联重建密度场的可行性,这种关联在低红移时比弱透镜诱导的密度场关联更具优势。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GALACTIC ANGULAR MOMENTA AND ANGULAR MOMENTUM CORRELATIONS IN THE COSMOLOGICAL LARGE-SCALE STRUCTURE
宇宙学大尺度结构中的银河角动量和角动量相关性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Björn Malte Schäfer其他文献

Professor Dr. Björn Malte Schäfer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Björn Malte Schäfer', 18)}}的其他基金

Ellipticity correlations between galaxies, reconstructions of the cosmic density field, tidal shear correlations in the cosmic structure
星系之间的椭圆度相关性、宇宙密度场的重建、宇宙结构中的潮汐剪切相关性
  • 批准号:
    216538304
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

High-fidelity dating of deep-time records: Integrating Earth's dynamical ellipticity and tidal dissipation into astrochronology
深时记录的高保真年代测定:将地球的动力椭圆率和潮汐耗散纳入天文年代学
  • 批准号:
    2034660
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
p-ellipticity for complex valued elliptic PDEs and systems
复值椭圆偏微分方程和系统的 p 椭圆度
  • 批准号:
    2588134
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigating the ellipticity of equations for cuscuton gravity
研究 cuscuton 重力方程的椭圆性
  • 批准号:
    524417-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Imaging Electrons and Ions produced by two colour Counter rotating laser fields of variable ellipticity
可变椭圆率的两个彩色反向旋转激光场产生的电子和离子成像
  • 批准号:
    281272854
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Ellipticity correlations between galaxies, reconstructions of the cosmic density field, tidal shear correlations in the cosmic structure
星系之间的椭圆度相关性、宇宙密度场的重建、宇宙结构中的潮汐剪切相关性
  • 批准号:
    216538304
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robust Multivariate Statistics: Beyond Ellipticity and Affine Equivariance
稳健的多元统计:超越椭圆性和仿射等方差
  • 批准号:
    0906773
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Existence of C∞ solutions of overdetermined elliptic linear partial differential equations
超定椭圆线性偏微分方程C∞解的存在性
  • 批准号:
    10640188
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Some Effects on Anelasticity, Rotation and Ellipticity on Geophysical Observations
地球物理观测中迟弹性、旋转和椭圆度的一些影响
  • 批准号:
    8407110
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了