Robust Multivariate Statistics: Beyond Ellipticity and Affine Equivariance

稳健的多元统计:超越椭圆性和仿射等方差

基本信息

  • 批准号:
    0906773
  • 负责人:
  • 金额:
    $ 22.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

The concepts of affine equivariance and elliptically symmetric distributions have played a central role in the development of robust multivariate statistical methods over the past 30 years. Statistical methods which are robust over the class of elliptical distributions are more widely applicable than methods based solely on the multivariate normal distribution. The class of elliptical distributions, though, represents only a small class of multivariate models. Important cases which do not fall within this class are mixture models and independent components models. Affine equivariance is a useful property since methods possessing it behave equally well over different covariance structures. However, there are many cases where interest lies in certain type of covariance structures, e.g. factor analysis models. The investigator's research goals are thus two-fold. First, the investigator is to further develop and study "invariant coordinate selection." This is a new multivariate method, recently introduced by the investigator, which is well suited for exploring non-elliptical models. In particular, it can be used to uncover Fisher's linear discriminant subspace for mixture models when the group identifications are unknown, and can be use to uncover the independent components in independent components models. Second, the investigator is to study the properties of certain non-affine equivariant methods, such as orthogonal equivariant M-estimates. The primary goal here is to achieve a better understanding of the type of covariance structures for which such methods may or may not be advantageous.The need to analyze multivariate data arises in many diverse disciplines, such as computer science, psychology, meteorology, sociology, biology, econometrics and engineering. The primary interest in such data typically is not with an understanding of each variable separately, but rather with the interrelationships among the variables or with unmeasurable "latent" variables. Many common methods employed in these areas are based upon the multivariate normal model, which are now well known to perform poorly if the normal model does not hold. In particular, only a few errors in the data or a slight deviation in the model can highly influence the interpretation of an experiment or a data set, sometimes with disastrous consequences. This is particularly problematic with high dimensional data, i.e. data consisting of many variables, since bad data points or deviations from the model can be difficult to detect whenever they are associated not with just one variable but with a number of the variables. Thus, multivariate methods which are not greatly affected by such problems are crucial to a proper analysis of such data. The investigator anticipates that the intended research will have an important impact not only on steering the direction of research within robust statistics, but also on the methodology used within the many disciplines that routinely deal with multivariate data.
在过去的30年中,仿射等方差和椭圆对称分布的概念在稳健的多元统计方法的发展中发挥了核心作用。在椭圆分布类上稳健的统计方法比仅基于多元正态分布的方法适用更广泛。然而,椭圆分布类只代表了一小类多变量模型。不属于这一类的重要情况是混合模型和独立成分模型。仿射等方差是一个有用的属性,因为拥有它的方法在不同的协方差结构上表现得同样好。然而,在许多情况下,人们对某些类型的协方差结构感兴趣,例如因子分析模型。因此,研究者的研究目标是双重的。首先,研究者要进一步发展和研究“不变坐标选择”。“这是一种新的多变量方法,最近由研究人员引入,非常适合探索非椭圆模型。特别地,它可以用来发现混合模型的Fisher线性判别子空间时,组标识是未知的,可以用来发现独立分量模型中的独立分量。其次,研究了某些非仿射等变方法的性质,如正交等变M-估计。这里的主要目标是更好地理解协方差结构的类型,这种方法可能是有利的,也可能不是。分析多变量数据的需求出现在许多不同的学科,如计算机科学,心理学,气象学,社会学,生物学,计量经济学和工程。对这些数据的主要兴趣通常不是单独了解每个变量,而是变量之间的相互关系或不可测量的“潜在”变量。在这些领域中采用的许多常用方法都是基于多元正态模型,现在众所周知,如果正态模型不成立,则其表现很差。特别是,数据中的一些错误或模型中的轻微偏差可能会严重影响实验或数据集的解释,有时会带来灾难性的后果。这对于高维数据(即,由许多变量组成的数据)尤其成问题,因为每当坏数据点或与模型的偏差不与仅一个变量相关联而是与多个变量相关联时,它们可能难以检测。因此,多变量的方法,这是不是很大的影响,这些问题是至关重要的,这样的数据进行适当的分析。研究人员预计,预期的研究将产生重要的影响,不仅在强大的统计数据的研究方向,而且在许多学科内使用的方法,经常处理多变量数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Tyler其他文献

Volar Cortical Integrity in Non-Operatively Treated Adult Distal Radius Fractures.
非手术治疗成人桡骨远端骨折的掌侧皮质完整性。
779-3 L-arginine Acutely Reduces Increased Ventilatory Cost of Carbon Dioxide Excretion on Exercise in Chronic Heart Failure: Evidence of Pulmonary Endothelial Dysfunction?
  • DOI:
    10.1016/0735-1097(95)92687-z
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian P. Banning;Bernard Prendergast;Stuart Elbourne;David Tyler;Andrew H. Henderson
  • 通讯作者:
    Andrew H. Henderson

David Tyler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Tyler', 18)}}的其他基金

Lassoing Eigenvalues: A Classical and a Robust Approach
套索特征值:一种经典且稳健的方法
  • 批准号:
    1812198
  • 财政年份:
    2018
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Development and Fundamental Studies of N2-absorbing, Iron-phosphine-containing Polymers for Pressure Swing Purification of Natural Gas
合作研究:用于天然气变压净化的吸氮含铁膦聚合物的开发和基础研究
  • 批准号:
    1503550
  • 财政年份:
    2015
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Standard Grant
Robust Estimation for Structured Covariance Models
结构化协方差模型的鲁棒估计
  • 批准号:
    1407751
  • 财政年份:
    2014
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Radical Cage Effects in Organometallic Chemistry
有机金属化学中的自由基笼效应
  • 批准号:
    1360347
  • 财政年份:
    2014
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Investigation of Radical Cage Effects in Organometallic Chemistry
有机金属化学中自由基笼效应的研究
  • 批准号:
    0809393
  • 财政年份:
    2008
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
GOALI: Investigation of a Sulfuric Acid-Free Route to Methacrylates Using Homogeneous Catalysts in Aqueous Solution.
目标:研究在水溶液中使用均相催化剂生产甲基丙烯酸酯的无硫酸路线。
  • 批准号:
    0719171
  • 财政年份:
    2007
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Standard Grant
Invariant Coordinate Selection (ICS): A Robust Statistical Perspective on Independent Component Analysis (ICA)
不变坐标选择 (ICS):独立成分分析 (ICA) 的稳健统计视角
  • 批准号:
    0604596
  • 财政年份:
    2006
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Radical Cage Effects in Organometallic Chemistry
有机金属化学中的自由基笼效应
  • 批准号:
    0452004
  • 财政年份:
    2005
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Robust Methods for Exploring Multivariate Data
探索多元数据的稳健方法
  • 批准号:
    0305858
  • 财政年份:
    2003
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Experiments in Education: Development of a Week-long Summer Shortcourse in Polymer Chemistry for Undergraduates
教育实验:为本科生开设为期一周的高分子化学暑期短期课程
  • 批准号:
    0209835
  • 财政年份:
    2002
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant

相似海外基金

Multivariate Statistics and Machine Learning for Quality Control of Dried Ocimum Products
用于干罗勒产品质量控制的多元统计和机器学习
  • 批准号:
    10676412
  • 财政年份:
    2023
  • 资助金额:
    $ 22.22万
  • 项目类别:
Highly Multivariate Geo-Statistics Using Graphical Models
使用图形模型的高度多元地理统计
  • 批准号:
    1915803
  • 财政年份:
    2019
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multi-distribution, Multivariate, and Multiscale Spatio-Temporal Models with Applications to Official Statistics
合作研究:多分布、多变量、多尺度时空模型及其在官方统计中的应用
  • 批准号:
    1853096
  • 财政年份:
    2019
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-distribution, Multivariate, and Multiscale Spatio-Temporal Models with Applications to Official Statistics
合作研究:多分布、多变量、多尺度时空模型及其在官方统计中的应用
  • 批准号:
    1853099
  • 财政年份:
    2019
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Standard Grant
Using multivariate statistics to improve predictions of the ecotoxicity and uptake of contaminants in soils based on physico-chemical parameters
使用多元统计数据基于物理化学参数改进对土壤中污染物的生态毒性和吸收的预测
  • 批准号:
    424170-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
Using multivariate statistics to improve predictions of the ecotoxicity and uptake of contaminants in soils based on physico-chemical parameters
使用多元统计数据基于物理化学参数改进对土壤中污染物的生态毒性和吸收的预测
  • 批准号:
    424170-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
APPLICATION OF MULTIVARIATE AND BINOMIAL PROBABILITY STATISTICS IN A RISK-BASED A
多元和二项概率统计在基于风险的A中的应用
  • 批准号:
    8517386
  • 财政年份:
    2012
  • 资助金额:
    $ 22.22万
  • 项目类别:
Algorithms for robust multivariate statistics
稳健的多元统计算法
  • 批准号:
    250380-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Discovery Grants Program - Individual
APPLICATION OF MULTIVARIATE AND BINOMIAL PROBABILITY STATISTICS IN A RISK-BASED A
多元和二项概率统计在基于风险的A中的应用
  • 批准号:
    8543475
  • 财政年份:
    2012
  • 资助金额:
    $ 22.22万
  • 项目类别:
Algorithms for robust multivariate statistics
稳健的多元统计算法
  • 批准号:
    250380-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 22.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了