p-ellipticity for complex valued elliptic PDEs and systems

复值椭圆偏微分方程和系统的 p 椭圆度

基本信息

  • 批准号:
    2588134
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The solvability theory for complex valued elliptic PDEs and systems is significantly less understood than the equivalent scalar elliptic theory with real coefficients. This is due to the lack of certain tools available in the scalar real case such as themaximum principle or the De Giorgi-Nash-Moser regularity theory. Recently as new concept called p-ellipticity has allowed to make significant progress in the setting of elliptic complex valued PDEs. The aim of the project is to further explore this breakthrough and its consequences to solvability of such PDEs under the Regularity/Neumann boundary conditions and questions of extrapolation of solvability. The second topic the project will look at is p-ellipticity for elliptic systems withparticular focus on specific systems such as the Lame equations for linear elasticity.
对于复值椭圆型偏微分方程和系统的可解性理论,人们的理解程度明显低于实系数等价标量椭圆型理论。这是由于在标量实际情况下缺乏某些可用的工具,如极大值原理或De Giorgi-Nash-Moser正则性理论。近年来,p-椭圆性的新概念使椭圆复值偏微分方程的建立取得了重大进展。该项目的目的是进一步探索这一突破及其对这些偏微分方程在正则/诺伊曼边界条件下的可解性的影响,以及可解性的外推问题。该项目将关注的第二个主题是椭圆系统的p椭圆性,特别关注特定系统,如线性弹性的Lame方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
  • 批准号:
    92054103
  • 批准年份:
    2020
  • 资助金额:
    87.0 万元
  • 项目类别:
    重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
  • 批准号:
    31970693
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
  • 批准号:
    31970656
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
  • 批准号:
    31971330
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
  • 批准号:
    31971055
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
  • 批准号:
    31872651
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
  • 批准号:
    31871394
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Memory Impedance for Efficient Complex-valued Neural Networks
高效复值神经网络的内存阻抗
  • 批准号:
    EP/X018431/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Manifold-valued statistical models for longitudinal morphometic analysis in preclinical Alzheimer's disease (AD)
用于临床前阿尔茨海默病 (AD) 纵向形态分析的流形值统计模型
  • 批准号:
    9170619
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
  • 批准号:
    1617610
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Complex-shape recognition of a convex hull based on the Euler characteristic and integrals of vector-valued functions
基于欧拉特征和向量值函数积分的凸包复杂形状识别
  • 批准号:
    16K21399
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Complex-valued Reed-Solomon Codes for Deterministic Compressed Sensing
用于确定性压缩感知的复值 Reed-Solomon 码
  • 批准号:
    273209895
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive millimeter-wave security imaging based on complex-valued neural networks
基于复值神经网络的自适应毫米波安全成像
  • 批准号:
    21300089
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Complex-Valued Signal Processing and its Application to Analysis of Brain Imaging Data
复值信号处理及其在脑成像数据分析中的应用
  • 批准号:
    0840895
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modelling Complex-Valued Diffusion Tensor Imaging Data and Efficient Methods for Inference
复值扩散张量成像数据建模和有效的推理方法
  • 批准号:
    EP/E031536/1
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Nonlinear Dynamics Analysis of Complex-Valued Neural Networks and its Engineering Applications
复值神经网络非线性动力学分析及其工程应用
  • 批准号:
    19700214
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: SEI: Independent Component Analysis of Complex-Valued Brain Imaging Data
合作研究:SEI:复值脑成像数据的独立成分分析
  • 批准号:
    0612076
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了