Automated Detection of Informational Signs and Hazardous Objects: Visual Aids for the Blind
自动检测信息标志和危险物体:盲人视觉辅助工具
基本信息
- 批准号:9800670
- 负责人:
- 金额:$ 27.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will develop a framework for the rapid detection, location, and identification of visual targets in unconstrained real world domains. This framework will lead to algorithms which can be implemented on portable computers with video input with the goal of being used, for example, to enable the blind/visually impaired to navigate in real world scenes. These requirements mean that the algorithms must be extremely efficient at extracting information from the input images. The approach will use statistical analysis of the targets and background, taking into account variations due to illumination and viewpoint variations, to determine probabilistic models for the appearance of the target and background. From these models, sets of tests and groups of tests will be determined. These tests will be designed to be maximally informative, based on statistical measures of errors rates such as Chernoff Information, and to lead to fast implementations on portable PC's. The search strategy is based on the intuition of picking tests which maximize the expected gain in information about the target hypothesis. In practical problems, however, it will not always be possible to compute these expected information gains in real time. Therefore the search strategy will make use of a more general formulation in terms of A algorithms where the search is guided by a heuristics taylored to the application domain. Expected information is one possible heuristic but there are many others which are more easily computable and which can still give provable convergence to the optimal solution.
本研究将发展一个快速侦测、定位与辨识无限制真实的世界域中视觉目标的架构。 这个框架将导致算法,可以在便携式计算机上实现视频输入的目标,例如,使盲人/视障人士在真实的世界场景中导航。 这些要求意味着算法必须非常有效地从输入图像中提取信息。 该办法将 使用目标和背景的统计分析,考虑由于照明和视点变化引起的变化,以确定目标和背景的外观的概率模型。 根据这些模型,将确定测试集和测试组。 这些测试将根据错误率的统计测量设计为最大限度地提供信息 例如,信息,并导致 在便携式PC上快速实现。 搜索策略是基于直觉的挑选测试,最大限度地提高预期收益的信息有关的目标假设。 然而,在实际问题中,并不总是能够在真实的时间中计算这些期望的信息增益。 因此,搜索策略将使用更一般的公式,在A算法中,搜索由泰勒应用领域的算法指导。 预期信息是一种可能的启发式方法,但还有许多其他方法更容易计算,并且仍然可以提供可证明的最优解收敛性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Yuille其他文献
Stereo and controlled movement
- DOI:
10.1007/bf00127814 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:9.300
- 作者:
Alan Yuille;Davi Geiger - 通讯作者:
Davi Geiger
Max Margin Learning of Hierarchical Configural Deformable Templates (HCDTs) for Efficient Object Parsing and Pose Estimation
- DOI:
10.1007/s11263-010-0375-1 - 发表时间:
2010-08-31 - 期刊:
- 影响因子:9.300
- 作者:
Long (Leo) Zhu;Yuanhao Chen;Chenxi Lin;Alan Yuille - 通讯作者:
Alan Yuille
Belief Propagation, Mean-field, and Bethe Approximations
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Alan Yuille - 通讯作者:
Alan Yuille
STFlow: Self-Taught Optical Flow Estimation Using Pseudo Labels
STFlow:使用伪标签自学光流估计
- DOI:
10.1109/tip.2020.3024015 - 发表时间:
2020-09 - 期刊:
- 影响因子:10.6
- 作者:
Zhe Ren;Wenhan Luo;Junchi Yan;Wenlong Liao;Xiaokang Yang;Alan Yuille;Hongyuan Zha - 通讯作者:
Hongyuan Zha
Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
场景级监督下的深层网络用于遥感图像的多类地理空间目标检测
- DOI:
10.1016/j.isprsjprs.2018.09.014 - 发表时间:
2018-12 - 期刊:
- 影响因子:12.7
- 作者:
Yansheng Li;Yongjun Zhang;Xin Huang;Alan Yuille - 通讯作者:
Alan Yuille
Alan Yuille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Yuille', 18)}}的其他基金
Collaborative Research: CompCog: Achieving Analogical Reasoning via Human and Machine Learning
合作研究:CompCog:通过人类和机器学习实现类比推理
- 批准号:
1827427 - 财政年份:2018
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1762521 - 财政年份:2017
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317376 - 财政年份:2013
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
RI: Small: Recursive Compositional Models for Vision
RI:小型:视觉递归组合模型
- 批准号:
0917141 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
A Computational Theory of Motion Perception Modeling the Statistics of the Environment
环境统计建模的运动感知计算理论
- 批准号:
0736015 - 财政年份:2007
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
IPAM/Statistics Graduate Workshop
IPAM/统计学研究生研讨会
- 批准号:
0743835 - 财政年份:2007
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Computational Theory of Motion Perception
运动感知的计算理论
- 批准号:
0613563 - 财政年份:2006
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Image Parsing: Integrating Generative and Discriminative Methods
图像解析:集成生成方法和判别方法
- 批准号:
0413214 - 财政年份:2005
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
SGER: Stochastic Algorithms for Visual Search and Recognition
SGER:视觉搜索和识别的随机算法
- 批准号:
0240148 - 财政年份:2003
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Deformable Templates for Face Description, Recognition, Interpretation, and Learning
用于人脸描述、识别、解释和学习的可变形模板
- 批准号:
9696107 - 财政年份:1996
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
- 批准号:
24K17366 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016218/1 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Research Grant
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
- 批准号:
MR/Z503812/1 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Research Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant