Computational Theory of Motion Perception
运动感知的计算理论
基本信息
- 批准号:0613563
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal will develop fundamental understanding of aspects of the human visual system. The goal is to understand how humans perceive motion . In other words, to understand what goes on inside a human's brain when he, or she, looks at a group of birds flying or snowflakes falling. The proposal is interdisciplinary and combines computational theory, psychophysics and physiology. The computational theory provides a mathematical model for how humans process motion. The theory is implemented by computer algorithms, which are applied to a motion sequence of images, and which predict the estimated velocities of motion and other properties. These motion sequences of images are pseudo-realistic, in the sense that they appear to be natural images (e.g. of flying birds, or snow) but instead are artificial parameterized models (which enables us to design controlled experiments by altering the parameters). The psychophysical experiments compare the predictions of our theory with the performance of human subjects performing a range of motion estimation tasks. These experiments address issues such as, what types of motion stimuli are people expert at perceiving? The physiological experiments attempt to pin down where motion processing takes place in the brain. In particular, we study the activity of neural cells (neurons) in different parts of the brain during motion perception. It is anticipated that understanding how the human visual system processes motion will enable us to develop more robust and powerful computer vision algorithms which will have many technological applications (e.g. for robotics and automated medical diagnosis). In addition, understanding how neurons perform computations is central to the entire enterprise of neuroscience in its attempt to give a scientific account of the brain mechanisms underlying our mental life.The grant will help encourage underrepresented groups by supporting a female postdoctoral researcher. The grant will include data sharing of the multi-electrode recordings of the physiological experiments and, in addition, we will make available the code for making novel pseudo-random stimuli. The proposal also has educational impact because it will help train a graduate student in interdisciplinary research, encompassing computer science, psychology, neuroscience and statistics.
该提案将发展对人类视觉系统各个方面的基本理解。我们的目标是了解人类如何感知运动。换句话说,就是要了解当一个人看到一群飞翔的鸟儿或飘落的雪花时,他或她的大脑里发生了什么。该提案是跨学科的,结合了计算理论,心理物理学和生理学。计算理论为人类如何处理运动提供了数学模型。该理论通过计算机算法来实现,该算法被应用于图像的运动序列,并且预测估计的运动速度和其他属性。这些图像的运动序列是伪现实的,从某种意义上说,它们看起来是自然图像(例如飞鸟或雪),但实际上是人工参数化模型(这使我们能够通过改变参数来设计受控实验)。 心理物理实验比较了我们的理论预测与人类受试者执行一系列运动估计任务的表现。这些实验解决的问题,如,什么类型的运动刺激是人们的专家在感知?生理学实验试图确定大脑中运动处理发生的位置。特别是,我们研究在运动感知过程中大脑不同部位的神经细胞(神经元)的活动。 预计了解人类视觉系统如何处理运动将使我们能够开发出更强大和更强大的计算机视觉算法,这些算法将具有许多技术应用(例如机器人和自动化医疗诊断)。 此外,了解神经元如何执行计算是整个神经科学事业的核心,它试图对我们精神生活背后的大脑机制进行科学解释。该基金将通过支持一位女性博士后研究人员,帮助鼓励代表性不足的群体。 该补助金将包括生理实验的多电极记录的数据共享,此外,我们将提供用于制作新的伪随机刺激的代码。 该提案还具有教育影响,因为它将有助于培养跨学科研究的研究生,包括计算机科学,心理学,神经科学和统计学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Yuille其他文献
Stereo and controlled movement
- DOI:
10.1007/bf00127814 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:9.300
- 作者:
Alan Yuille;Davi Geiger - 通讯作者:
Davi Geiger
Max Margin Learning of Hierarchical Configural Deformable Templates (HCDTs) for Efficient Object Parsing and Pose Estimation
- DOI:
10.1007/s11263-010-0375-1 - 发表时间:
2010-08-31 - 期刊:
- 影响因子:9.300
- 作者:
Long (Leo) Zhu;Yuanhao Chen;Chenxi Lin;Alan Yuille - 通讯作者:
Alan Yuille
Belief Propagation, Mean-field, and Bethe Approximations
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Alan Yuille - 通讯作者:
Alan Yuille
Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
场景级监督下的深层网络用于遥感图像的多类地理空间目标检测
- DOI:
10.1016/j.isprsjprs.2018.09.014 - 发表时间:
2018-12 - 期刊:
- 影响因子:12.7
- 作者:
Yansheng Li;Yongjun Zhang;Xin Huang;Alan Yuille - 通讯作者:
Alan Yuille
STFlow: Self-Taught Optical Flow Estimation Using Pseudo Labels
STFlow:使用伪标签自学光流估计
- DOI:
10.1109/tip.2020.3024015 - 发表时间:
2020-09 - 期刊:
- 影响因子:10.6
- 作者:
Zhe Ren;Wenhan Luo;Junchi Yan;Wenlong Liao;Xiaokang Yang;Alan Yuille;Hongyuan Zha - 通讯作者:
Hongyuan Zha
Alan Yuille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Yuille', 18)}}的其他基金
Collaborative Research: CompCog: Achieving Analogical Reasoning via Human and Machine Learning
合作研究:CompCog:通过人类和机器学习实现类比推理
- 批准号:
1827427 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1762521 - 财政年份:2017
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317376 - 财政年份:2013
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
RI: Small: Recursive Compositional Models for Vision
RI:小型:视觉递归组合模型
- 批准号:
0917141 - 财政年份:2009
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
A Computational Theory of Motion Perception Modeling the Statistics of the Environment
环境统计建模的运动感知计算理论
- 批准号:
0736015 - 财政年份:2007
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
IPAM/Statistics Graduate Workshop
IPAM/统计学研究生研讨会
- 批准号:
0743835 - 财政年份:2007
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Image Parsing: Integrating Generative and Discriminative Methods
图像解析:集成生成方法和判别方法
- 批准号:
0413214 - 财政年份:2005
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
SGER: Stochastic Algorithms for Visual Search and Recognition
SGER:视觉搜索和识别的随机算法
- 批准号:
0240148 - 财政年份:2003
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Automated Detection of Informational Signs and Hazardous Objects: Visual Aids for the Blind
自动检测信息标志和危险物体:盲人视觉辅助工具
- 批准号:
9800670 - 财政年份:1998
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Deformable Templates for Face Description, Recognition, Interpretation, and Learning
用于人脸描述、识别、解释和学习的可变形模板
- 批准号:
9696107 - 财政年份:1996
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Construction of a new mathematical model of grain boundary motion and development in the theory of differential equations
晶界运动新数学模型的构建及微分方程理论的发展
- 批准号:
22K03376 - 财政年份:2022
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The largest scales in the Universe: Studying the relativistic effects of our motion and deviations from theory to reveal new physics
宇宙中最大的尺度:研究我们运动的相对论效应和理论偏差,以揭示新的物理学
- 批准号:
559856-2021 - 财政年份:2022
- 资助金额:
$ 40.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
The largest scales in the Universe: Studying the relativistic effects of our motion and deviations from theory to reveal new physics
宇宙中最大的尺度:研究我们运动的相对论效应和理论偏差,以揭示新的物理学
- 批准号:
559856-2021 - 财政年份:2021
- 资助金额:
$ 40.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Open quantum dynamics theory of excition, electron and proton transfer processes: Hierarchical equations of motion approach
激发、电子和质子转移过程的开放量子动力学理论:层次运动方程方法
- 批准号:
21H01884 - 财政年份:2021
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Challenge of Establishing a New Theory of Stirring and Mixing Operations by Introducing Human Motion Imitation
通过引入人体运动模仿建立搅拌和混合操作新理论的挑战
- 批准号:
20K21110 - 财政年份:2020
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Physically consistent human motion generation based on fusion theory of motion optimization and deep learning
基于运动优化和深度学习融合理论的物理一致的人体运动生成
- 批准号:
18H03315 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New mathematical theory for fluid motion on surfaces with holes.
带孔表面上流体运动的新数学理论。
- 批准号:
DE180101098 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Discovery Early Career Researcher Award
Motion control theory for reflected or transmission images on object surfaces
物体表面反射或透射图像的运动控制理论
- 批准号:
17K19965 - 财政年份:2017
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New horizon in dynamics theory for anthropomorphic systems towards interaction-oriented motion synthesis
面向交互的运动合成的拟人系统动力学理论的新视野
- 批准号:
17H00768 - 财政年份:2017
- 资助金额:
$ 40.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding the crowd - improving accuracy in collective motion theory
了解人群——提高集体运动理论的准确性
- 批准号:
DP160103905 - 财政年份:2016
- 资助金额:
$ 40.6万 - 项目类别:
Discovery Projects