CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids

职业:高度快速、灵敏的核酸纳米机电检测

基本信息

  • 批准号:
    2338857
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

The aim of this project is to develop a novel method for detecting genetic materials such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), uniquely combining high sensitivity with speed to overcome the limitations of existing techniques. The project will lead to compact, quick, accurate, and user-friendly devices for genetic material detection. These devices operate by measuring the electrical responses of genetic materials when they vibrate in an external electric field. Such innovation holds the potential to revolutionize bioengineering, enabling more efficient testing of genetic materials, especially in regions without advanced laboratory facilities. Consequently, it promises to enhance pandemic management and global healthcare. A key aspect of this project is its educational outreach. The plan aims to engage students across all levels, from kindergarten through college, placing special emphasis on the inclusion of women and groups typically underrepresented in science, technology, engineering, and mathematics (STEM) fields. The project envisions collaboration among academic institutions, industry, and other key organizations. Such partnerships are essential for further advancing the field and ensuring the widespread application and impact of the proposed research.Amplification-free electronic detection of low-abundance nucleic-acid oligomers holds significant promise for advancing point-of-care diagnostics of various diseases. However, known all-electrical methods struggle to simultaneously achieve high sensitivity and rapid detection. The objective of this proposed research is to develop a nanomechanoelectrical transduction approach and integrate it with electrophoresis running transversal to the longitudinal axis of a microfluidic channel, to enhance both the sensitivity and time efficiency of nucleic acid detection by two orders of magnitude. To attain the overall objective, the following specific aims will be met: 1) Determine the nanomechanoelectrical transduction principle of nucleic-acid nanostructures tethered to a graphene transistor and oscillating in an alternating electric field, 2) Achieve rapid, high-sensitivity nucleic-acid detection by integrating the nanomechanoelectrical transduction with transversal electrophoresis. The research project is highly innovative because it departs from the status quo of electrical nucleic-acid sensors, which directly convert the occurrence of probe-target nucleic-acid hybridization into electrical response, by implementing a new nanomechanoelectrical transduction pathway relying on the intrinsic difference in pliability, an intrinsic mechanical property, between unpaired and paired DNA strands. The expected outcomes of this project include a comprehensive understanding of the nanomechanoelectrical transduction principle for maximizing the multiplexity, selectivity, and sensitivity in nucleic-acid detection (specific aim 1) and accomplishing ultra-high sensitivity and time-efficient nucleic-acid detection based on a micro setup (specific aim 2). These outcomes are expected to generate significant positive impact on bioengineering advancement and rapid, accurate point-of-care nucleic-acid testing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是开发一种新的方法来检测遗传物质,如脱氧核糖核酸(DNA)和核糖核酸(RNA),独特地结合了高灵敏度和快速,以克服现有技术的局限性。该项目将带来紧凑、快速、准确和用户友好的遗传物质检测设备。这些设备通过测量遗传物质在外部电场中振动时的电反应来运行。这种创新有可能给生物工程带来革命性的变化,能够更有效地测试遗传物质,特别是在没有先进实验室设施的地区。因此,它承诺加强大流行管理和全球医疗保健。该项目的一个关键方面是其教育宣传。该计划旨在让从幼儿园到大学的所有级别的学生参与进来,特别强调纳入女性和通常在科学、技术、工程和数学(STEM)领域代表性较低的群体。该项目设想了学术机构、行业和其他关键组织之间的合作。这种伙伴关系对于进一步推动该领域的发展和确保拟议研究的广泛应用和影响至关重要。低丰度核酸寡聚体的免放大电子检测对于推进各种疾病的医疗点诊断具有重要的前景。然而,已知的全电子方法难以同时实现高灵敏度和快速检测。这项研究的目的是开发一种纳米机电转换方法,并将其与沿微流控通道纵轴运行的电泳相结合,将核酸检测的灵敏度和时间效率提高两个数量级。为了实现这一总体目标,将实现以下具体目标:1)确定绑在石墨烯晶体管上并在交变电场中振荡的核酸纳米结构的纳米机电转换原理;2)将纳米机电转换与横向电泳相结合,实现快速、高灵敏度的核酸检测。该研究项目具有很高的创新性,因为它不同于电子核酸传感器的现状,通过实施一种新的纳米机电转导途径,直接将探针-目标核酸杂交的发生转化为电响应,这依赖于未配对和配对DNA链之间柔韧性的内在机械性能差异。该项目的预期成果包括全面了解纳米机电转导原理,以最大限度地提高核酸检测的多重性、选择性和灵敏度(具体目标1),并在微观设置的基础上实现超高灵敏度和时效性核酸检测(具体目标2)。这些结果预计将对生物工程的进步和快速、准确的护理点核酸测试产生重大的积极影响。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinglei Ping其他文献

Measuring the thickness of few-layer graphene by laser scanning microscopy
用激光扫描显微镜测量少层石墨烯的厚度
Structural-functional analysis of engineered protein-nanoparticle assemblies using graphene microelectrodes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01565h Click here for additional data file.
使用石墨烯微电极对工程蛋白质纳米颗粒组件进行结构功能分析† †提供电子补充信息 (ESI),请参阅 DOI:10.1039/c7sc01565h 单击此处获取其他数据文件。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Jinglei Ping;K. Pulsipher;Ramya Vishnubhotla;J. A. Villegas;Tacey L. Hicks;S. Honig;J. Saven;I. Dmochowski;A. T. Johnson
  • 通讯作者:
    A. T. Johnson
Surface Localized State Enhanced Field Electron Emission
表面局域态增强场电子发射

Jinglei Ping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于多模态数据的高度近视中的青光眼分类方法研究
  • 批准号:
    2025JJ50369
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GLRA2功能缺失影响视网膜发育导致高度近视的机制研究
  • 批准号:
    2025JJ80300
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高度近视致病基因鉴定及SOX2在近视中功能研究
  • 批准号:
    2025JJ70427
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
融合星载LiDAR和PolSAR数据的复杂地形条件下森林高度反演
  • 批准号:
    2025JJ80003
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
探究面向风电行业的热带气旋高分辨率百米高度风场的人工智能模型
  • 批准号:
    ZJMY25D050001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
顾及时序变化特征的森林冠层高度分区 反演方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
淡水鱼高度不饱和脂肪酸合成的调控机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高度降解检材的亲子鉴定
  • 批准号:
    2025JJ40091
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
考虑自然环境高度相依的高速公路链式微网供能可靠性评估与提升策略研
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于高度可调谐纳米酶信号放大策略构建超灵敏电化学体外诊断生物传感器的研究
  • 批准号:
    KLY25H200011
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Non-invasive structural tissue analysis for low-cost, highly accurate, safe and rapid cancer diagnosis.
非侵入性结构组织分析可实现低成本、高精度、安全且快速的癌症诊断。
  • 批准号:
    10063925
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
SUPPORTING WHO ONCHOCERCIASIS ELIMINATION PROGRAMS: PROGRESSING A HIGHLY SENSITIVE AND ULTRA-SPECIFIC RAPID DIAGNOSTIC TEST TO COMMERCIALIZATION READINESS
支持世界卫生组织根除盘尾丝虫病计划:推进高度敏感和超特异性的快速诊断测试以做好商业化准备
  • 批准号:
    10697164
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
First-in-class, highly sensitive and specific rapid diagnostic test to detect Paragonimus infections
用于检测并殖吸虫感染的一流、高灵敏度和特异性的快速诊断测试
  • 批准号:
    10545410
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
Trial of differential diagnosis by a highly sensitive rapid test method to detect exosomes specific for urinary tract infections.
通过高度灵敏的快速检测方法进行鉴别诊断试验,以检测尿路感染特异性外泌体。
  • 批准号:
    22K09487
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Measuring host competence across wild bird species during outbreaks of highly pathogenic avian influenza
RAPID:测量高致病性禽流感爆发期间野生鸟类的宿主能力
  • 批准号:
    2234970
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Improving inclusion and accessibility in custom breast forms using highly innovative inert resin to produce rapid custom moulds in an agile and de-medicalised process.
使用高度创新的惰性树脂以敏捷和非医疗化的流程生产快速定制模具,提高定制乳房形状的包容性和可及性。
  • 批准号:
    10035760
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
  • 批准号:
    2127096
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Multicenter research for social implementation of highly accurate and rapid Artificial intelligence pathological diagnosis system
高精度快速人工智能病理诊断系统社会化实施多中心研究
  • 批准号:
    22K06975
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly-sensitive, rapid and low cost plasmonic assay platform for Lyme disease diagnosis
用于莱姆病诊断的高灵敏度、快速且低成本的等离子体检测平台
  • 批准号:
    10546574
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
A highly multiplexed convection flow qPCR assay and platform delivering rapid, comprehensive identification and predictive AST of pathogens causing UTIs.
高度多重对流 qPCR 检测和平台,可对引起 UTI 的病原体进行快速、全面的识别和预测 AST。
  • 批准号:
    10322806
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了