Representation Theory of Reductive P-Adic Groups

还原P-Adic群的表示论

基本信息

项目摘要

ABSTRACT Gopal Prasad Michigan 98 01262 Gopal Prasad will continue his work on the classification of admissible representations of reductive p-adic groups in terms of their restrictions to compact-open subgroups. He hopes to be able to refine the theory of ("unrefined")minimal K-types developed by him and A. Moy, and also find a suitable extension of the Kirillov theory for this purpose. In another direction, he proposes to find a proof of the centrality of the congruence subgroup kernel for simply connected anisotropic groups of type A-n and determine the normal subgroups of the group of rational points of these groups. A reductive p-adic group is the special collection of symmetries of an arithmetic or geometric object. This study is expected to unravel intricate and fundamental properties of the objects and patterns which are of interest in arithmetic and geometry through the study of these symmetries. One way to understand a group of symmetries is through a representation of its elements as matrices. Representation theory does this in a systematic way. Ultimately the goal is to be able to construct and classify all representations of the reductive p-adic groups, and from this settle important questions about the underlying geometric object. This is important because so many interesting arithmetic and geometric objects have interesting symmetries that form a reductive p-adic group.
Gopal Prasad,Michigan,98,01262,Gopal Prasad将继续他的工作,即关于约化p-进群的可容许表示对紧开子群的限制的分类。他希望能够改进他和莫伊发展的(“未改进的”)极小K型理论,并为此目的找到基里洛夫理论的适当扩展。在另一个方向上,他建议证明A-n型单连通各向异性群的同余子群核的中心性,并确定这些群的有理点群的正规子群。约化p-进群是算术或几何对象的对称性的特殊集合。通过对这些对称性的研究,这项研究有望揭开对算术和几何感兴趣的物体和图案的复杂而基本的性质。理解一组对称的一种方法是将其元素表示为矩阵。表征理论以系统的方式做到了这一点。最终的目标是能够构造和分类约化p-进群的所有表示,并由此解决关于潜在几何对象的重要问题。这一点很重要,因为许多有趣的算术和几何对象都具有有趣的对称性,这些对称性形成了一个约化的p-进群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gopal Prasad其他文献

Discrete subgroups isomorphic to lattices in semi-simple Lie groups
与半单李群中的格同构的离散子群
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gopal Prasad
  • 通讯作者:
    Gopal Prasad
RETRACTED ARTICLE: Assessment of South Asian Pediatric Acute Kidney Injury: Epidemiology and Risk Factors (ASPIRE)—a prospective study on “severe dialysis dependent pediatric AKI”
  • DOI:
    10.1007/s00467-024-06324-6
  • 发表时间:
    2024-03-08
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sidharth Kumar Sethi;Rupesh Raina;Ahmad Sawan;Sadaf Asim;Aye Kyawt Khant;Manoj Matnani;Kalaivani Ganesan;Shraddha Lohia;Rajiv Sinha;Jubaida Rumana;Syed Saimul Haque;Suprita Kalra;Rabia Safdar;Gopal Prasad;Iftikhar Ijaz;Omer S. Ashruf;Aishwarya Nair;Savita S;Kritika Soni;Devendra Shrestha;Shankar Yadav;Asiri Abeyagunawardena;Valerie A. Luyckx;Khalid A. Alhasan;Azmeri Sultana
  • 通讯作者:
    Azmeri Sultana
Pseudo-reductive Groups: Contents
伪还原群:内容
  • DOI:
    10.1017/cbo9780511661143
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    B. Conrad;O. Gabber;Gopal Prasad
  • 通讯作者:
    Gopal Prasad
Finite Group Actions on Reductive Groups and Buildings and Tamely-Ramified Descent in Bruhat-Tits Theory
Bruhat-Tits 理论中还原群和建筑物的有限群作用和驯服下降
Strong rigidity ofQ-rank 1 lattices
  • DOI:
    10.1007/bf01418789
  • 发表时间:
    1973-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Gopal Prasad
  • 通讯作者:
    Gopal Prasad

Gopal Prasad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gopal Prasad', 18)}}的其他基金

Algebraic groups, arithmetic subgroups and geometry
代数群、算术子群和几何
  • 批准号:
    1401380
  • 财政年份:
    2014
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Algebraic Groups, Arithmetic Groups and Locally Symmetric Spaces
代数群、算术群和局部对称空间
  • 批准号:
    1001748
  • 财政年份:
    2010
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Standard Grant
Arithmetic, Geometry and Representation Theory of Reductive Groups
还原群的算术、几何和表示论
  • 批准号:
    0653512
  • 财政年份:
    2007
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Arithmetic and Representation Theory of Reductive Groups over Local and Global Fields
局部和全局域上还原群的算术和表示论
  • 批准号:
    0400640
  • 财政年份:
    2004
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Standard Grant
Arithmetic and Representation Theory of Reductive Groups
还原群的算术与表示论
  • 批准号:
    0100429
  • 财政年份:
    2001
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representation Theory of Reductive P-adic Groups
数学科学:还原 P 进群的表示论
  • 批准号:
    9500970
  • 财政年份:
    1995
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semi-simple Groups and Arithmetic Subgroups
数学科学:半单群和算术子群
  • 批准号:
    9204296
  • 财政年份:
    1992
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
  • 批准号:
    1855773
  • 财政年份:
    2019
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Standard Grant
Non-reductive Lie algebras, their symmetric invariants and interactions with representation theory
非还原李代数、它们的对称不变量以及与表示论的相互作用
  • 批准号:
    404144169
  • 财政年份:
    2018
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Heisenberg Professorships
Non-reductive Lie algebras, their symmetric invariants and interactions with representation theory
非还原李代数、它们的对称不变量以及与表示论的相互作用
  • 批准号:
    330450448
  • 财政年份:
    2017
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Heisenberg Fellowships
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
  • 批准号:
    1566618
  • 财政年份:
    2016
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Representation Theory of Reductive Groups over Local Fields
局部域上的还原群表示论
  • 批准号:
    1100943
  • 财政年份:
    2011
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
  • 批准号:
    0758262
  • 财政年份:
    2008
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Arithmetic, Geometry and Representation Theory of Reductive Groups
还原群的算术、几何和表示论
  • 批准号:
    0653512
  • 财政年份:
    2007
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Continuing Grant
Arithmetic and Representation Theory of Reductive Groups over Local and Global Fields
局部和全局域上还原群的算术和表示论
  • 批准号:
    0400640
  • 财政年份:
    2004
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Standard Grant
Representation theory of p-adic reductive lie groups via the orbit method
p-进还原李群的轨道法表示理论
  • 批准号:
    229816-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 8.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了