Arithmetic, Geometry and Representation Theory of Reductive Groups
还原群的算术、几何和表示论
基本信息
- 批准号:0653512
- 负责人:
- 金额:$ 15.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In their two recent papers, Gopal Prasad and Sai-Kee Yeung have constructed all arithmetic "fake" projective spaces and have found some of their geometric properties. Their work has led to many interesting questions related to these spaces and also about some of the singular surfaces with small geometric invarients. Prasad proposes to work on these questions. He has also been working with Andrei Rapinchuk to find the extent a locally symmetric space of finite volume is determined by the set of lengths of its closed geodesics, or its spectrum. Their work led them to define a new relationship between "large" (Zariski-dense or arithmetic) subgroups which they call "weak commensurability". They have shown that weak commesurability of two arithmetic subgroups of a simple Lie group, whose Dynkin diagram does not have symmetries, implies that they are commensurable. They are now investigating the situation when the Dynkin diagram does have a symmetry. Prasad and Rapinchuk have used theorems in transcendental number theory, and a widely believed conjecture due to Schanual, to show that if the quotients of the symmetric space of an absolutely simple real Lie group by two arithmetic subgroups have same set of lengths of closed geodesics, or have the same spectrum, then the two arithmetic subgroups are weakly commensurable. So their results on weakly commensurable arithmetic subgroup can be used. Prasad proposes to obtain analogous results for locally symmetric spaces arising from comples semi-simple Lie groups. In a comepletely different direction, Prasad has associated a natural Levi-subgroup to a given irreducible admissible representation of a reductive p-adic group. He will investigate what role this subgroup plays in the representation theory. Prasad has an ongoing collaboration with Rapinchuk to simplify, unify and complete the results on the congruence subgroup problem. They plan to write a book on this topic in near future.Recent work of Prasad with Sai-Kee Yeung on certain interesting geometric objects known as arithmetic fake projective spaces has led to an explicit construction of all of them and helped to determine many of their geometric properties. Their work has also led to some important questions about related geometric objects. Prasad's recent work with Rapinchuk has deep implications for a particularly important class of geometric structures known as locally symmetric spaces. These spaces arise from symmetric spaces, which as the name suggests, have a lot of symmetries. This work of Prasad and Rapinchuk has introduced a new notion of "weak commensurability" of large subgroups of the group of symmetries and studies its consequences in geometry and group theory.There are still some serious unresolved questions on which they will work.They also plan to write a book on the famous congruence subgroup problem to describe a new unified approach to settle it.
在他们最近的两篇论文中,Gopal Prasad和Sai-Kee Yeung构造了所有算术“假”投影空间,并发现了它们的一些几何性质。他们的工作引出了许多与这些空间相关的有趣问题,也引出了一些具有小几何不变量的奇异曲面。普拉萨德建议着手解决这些问题。他还一直在与Andrei Rapinchuk合作,寻找有限体积的局部对称空间的程度是由其封闭测地线的长度集或其谱决定的。他们的工作使他们定义了“大”(zariski密集或算术)子群之间的一种新关系,他们称之为“弱通约性”。他们证明了一个简单李群的两个算术子群的弱可通约性,其Dynkin图不具有对称性,意味着它们是可通约的。他们现在正在研究当Dynkin图确实具有对称性的情况。Prasad和Rapinchuk利用超越数论中的定理和Schanual的一个猜想,证明了两个算术子群所组成的绝对简单实数李群的对称空间中,如果商具有相同的闭测线长度集,或者具有相同的谱,则这两个算术子群是弱可公的。因此,它们在弱可通约算术子群上的结果是可用的。Prasad提出了由复半单李群产生的局部对称空间的类似结果。在一个完全不同的方向上,Prasad将自然列维子群与一个可约p进群的给定不可约容许表示联系起来。他将研究这一群体在表征理论中所起的作用。Prasad正在与Rapinchuk合作,简化、统一和完成同余子群问题的结果。他们计划在不久的将来写一本关于这个主题的书。Prasad和Sai-Kee Yeung最近在一些有趣的几何对象上的工作,即所谓的算术伪投影空间,导致了它们的明确构造,并帮助确定了它们的许多几何性质。他们的工作也引出了一些有关几何物体的重要问题。Prasad最近与Rapinchuk的合作对一类特别重要的几何结构——局部对称空间有着深远的影响。这些空间来自对称空间,顾名思义,对称空间有很多对称性。Prasad和Rapinchuk的这项工作引入了对称群的大子群的“弱可通约性”的新概念,并研究了其在几何和群论中的影响。仍有一些严重的未解决的问题需要他们来解决。他们还计划写一本关于著名的同余子群问题的书,以描述一种新的统一方法来解决它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopal Prasad其他文献
Discrete subgroups isomorphic to lattices in semi-simple Lie groups
与半单李群中的格同构的离散子群
- DOI:
- 发表时间:
1976 - 期刊:
- 影响因子:0
- 作者:
Gopal Prasad - 通讯作者:
Gopal Prasad
RETRACTED ARTICLE: Assessment of South Asian Pediatric Acute Kidney Injury: Epidemiology and Risk Factors (ASPIRE)—a prospective study on “severe dialysis dependent pediatric AKI”
- DOI:
10.1007/s00467-024-06324-6 - 发表时间:
2024-03-08 - 期刊:
- 影响因子:2.600
- 作者:
Sidharth Kumar Sethi;Rupesh Raina;Ahmad Sawan;Sadaf Asim;Aye Kyawt Khant;Manoj Matnani;Kalaivani Ganesan;Shraddha Lohia;Rajiv Sinha;Jubaida Rumana;Syed Saimul Haque;Suprita Kalra;Rabia Safdar;Gopal Prasad;Iftikhar Ijaz;Omer S. Ashruf;Aishwarya Nair;Savita S;Kritika Soni;Devendra Shrestha;Shankar Yadav;Asiri Abeyagunawardena;Valerie A. Luyckx;Khalid A. Alhasan;Azmeri Sultana - 通讯作者:
Azmeri Sultana
Pseudo-reductive Groups: Contents
伪还原群:内容
- DOI:
10.1017/cbo9780511661143 - 发表时间:
2010 - 期刊:
- 影响因子:1.8
- 作者:
B. Conrad;O. Gabber;Gopal Prasad - 通讯作者:
Gopal Prasad
Strong rigidity ofQ-rank 1 lattices
- DOI:
10.1007/bf01418789 - 发表时间:
1973-12 - 期刊:
- 影响因子:3.1
- 作者:
Gopal Prasad - 通讯作者:
Gopal Prasad
Finite Group Actions on Reductive Groups and Buildings and Tamely-Ramified Descent in Bruhat-Tits Theory
Bruhat-Tits 理论中还原群和建筑物的有限群作用和驯服下降
- DOI:
10.1353/ajm.2020.0027 - 发表时间:
2017 - 期刊:
- 影响因子:1.7
- 作者:
Gopal Prasad - 通讯作者:
Gopal Prasad
Gopal Prasad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopal Prasad', 18)}}的其他基金
Algebraic groups, arithmetic subgroups and geometry
代数群、算术子群和几何
- 批准号:
1401380 - 财政年份:2014
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Algebraic Groups, Arithmetic Groups and Locally Symmetric Spaces
代数群、算术群和局部对称空间
- 批准号:
1001748 - 财政年份:2010
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Arithmetic and Representation Theory of Reductive Groups over Local and Global Fields
局部和全局域上还原群的算术和表示论
- 批准号:
0400640 - 财政年份:2004
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Arithmetic and Representation Theory of Reductive Groups
还原群的算术与表示论
- 批准号:
0100429 - 财政年份:2001
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Representation Theory of Reductive P-Adic Groups
还原P-Adic群的表示论
- 批准号:
9801262 - 财政年份:1998
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory of Reductive P-adic Groups
数学科学:还原 P 进群的表示论
- 批准号:
9500970 - 财政年份:1995
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Semi-simple Groups and Arithmetic Subgroups
数学科学:半单群和算术子群
- 批准号:
9204296 - 财政年份:1992
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 15.88万 - 项目类别:
Research Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Postdoctoral Fellowships
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Continuing Grant
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Research Grant
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 15.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




