Arithmetic and Representation Theory of Reductive Groups

还原群的算术与表示论

基本信息

项目摘要

Reductive groups often arise as groups of symmetries of arithmetic and geometric structures. This connection makes their study very interesting and it is also a major source of important questions. For example, for the celebrated Langlands Program (in Number Theory), a complete classification of unitary representations of reductive groups over local fields is needed.I propose to investigate arithmetic, group theoretic and geometric properties of reductive groups using various tools. Among the powerful tools I have used in the past is the geometry of a nice space known as the "building" of the group provided by the Bruhat-Tits theory. This theory, together with a detailed understanding of the structure of reductive groups, and their cohomology (these are certain subtle geometric invariants of the groups), has helped to settle many important questions about these groups. In my own work on rigidity of certain "large" subgroups known as "lattices", and also in my study of arithmetic questions about these groups, including the congruence subgroup problem, these techniques played crucial role. In my joint work with Allen Moy, the Bruhat-Tits theory of reductive groups over local fields was used to settle some questions about their representations and also to classify admissible representations of depth zero. Subsequently, several other mathematicians used our frame-work and techniques to find solutions of many interesting problems in the representation theory and harmonic analysis. I will use some of the geometric techniques mentioned above to find a classification of irreducible admissible representations of reductive groups over local fields. I will also investigate the congruence subgroup problem which remains unresolved for certain (anisotropic) groups. The latter would require understanding their normal subgroups first. I am working on this question with Andrei Rapinchuk and Yoav Segev. I also plan to write a book on the congruence subgroup problem in collaboration with Andrei Rapinchuk.
约化群经常作为算术和几何结构的对称群出现。 这种联系使他们的研究非常有趣,也是重要问题的主要来源。 例如,著名的朗兰兹计划(数论),一个完整的分类的酉表示的约化群在当地fields.I建议调查的算术,群论和几何性质的约化群使用各种工具。 在我过去使用过的强大工具中,有一个很好的空间的几何学,它被称为布鲁哈特-山雀理论所提供的群体的“建筑”。 这个理论,加上对约化群的结构及其上同调(这些是群的某些微妙的几何不变量)的详细理解,帮助解决了关于这些群的许多重要问题。在我自己的工作刚性的某些“大”分组被称为“格”,也在我的研究算术问题,这些团体,包括同余分组问题,这些技术发挥了至关重要的作用。在我与艾伦莫伊的合作中,局部域上约化群的布鲁哈特-蒂茨理论被用来解决关于它们的表示的一些问题,并对深度为零的容许表示进行分类。 随后,其他几位数学家使用我们的框架和技术,找到了许多有趣的问题,在表示论和调和分析的解决方案。 我将使用上面提到的一些几何技巧来找到局部域上约化群的不可约容许表示的分类。我还将调查的同余子群问题,仍然悬而未决的某些(各向异性)群体。 后者首先需要了解它们的正规子群。 我正在与Andrei Rapinchuk和Yoav Segev研究这个问题。 我还计划与Andrei Rapinchuk合作写一本关于同余子群问题的书。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gopal Prasad其他文献

Discrete subgroups isomorphic to lattices in semi-simple Lie groups
与半单李群中的格同构的离散子群
  • DOI:
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gopal Prasad
  • 通讯作者:
    Gopal Prasad
RETRACTED ARTICLE: Assessment of South Asian Pediatric Acute Kidney Injury: Epidemiology and Risk Factors (ASPIRE)—a prospective study on “severe dialysis dependent pediatric AKI”
  • DOI:
    10.1007/s00467-024-06324-6
  • 发表时间:
    2024-03-08
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sidharth Kumar Sethi;Rupesh Raina;Ahmad Sawan;Sadaf Asim;Aye Kyawt Khant;Manoj Matnani;Kalaivani Ganesan;Shraddha Lohia;Rajiv Sinha;Jubaida Rumana;Syed Saimul Haque;Suprita Kalra;Rabia Safdar;Gopal Prasad;Iftikhar Ijaz;Omer S. Ashruf;Aishwarya Nair;Savita S;Kritika Soni;Devendra Shrestha;Shankar Yadav;Asiri Abeyagunawardena;Valerie A. Luyckx;Khalid A. Alhasan;Azmeri Sultana
  • 通讯作者:
    Azmeri Sultana
Pseudo-reductive Groups: Contents
伪还原群:内容
  • DOI:
    10.1017/cbo9780511661143
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    B. Conrad;O. Gabber;Gopal Prasad
  • 通讯作者:
    Gopal Prasad
Finite Group Actions on Reductive Groups and Buildings and Tamely-Ramified Descent in Bruhat-Tits Theory
Bruhat-Tits 理论中还原群和建筑物的有限群作用和驯服下降
Strong rigidity ofQ-rank 1 lattices
  • DOI:
    10.1007/bf01418789
  • 发表时间:
    1973-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Gopal Prasad
  • 通讯作者:
    Gopal Prasad

Gopal Prasad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gopal Prasad', 18)}}的其他基金

Algebraic groups, arithmetic subgroups and geometry
代数群、算术子群和几何
  • 批准号:
    1401380
  • 财政年份:
    2014
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Algebraic Groups, Arithmetic Groups and Locally Symmetric Spaces
代数群、算术群和局部对称空间
  • 批准号:
    1001748
  • 财政年份:
    2010
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Arithmetic, Geometry and Representation Theory of Reductive Groups
还原群的算术、几何和表示论
  • 批准号:
    0653512
  • 财政年份:
    2007
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Arithmetic and Representation Theory of Reductive Groups over Local and Global Fields
局部和全局域上还原群的算术和表示论
  • 批准号:
    0400640
  • 财政年份:
    2004
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Representation Theory of Reductive P-Adic Groups
还原P-Adic群的表示论
  • 批准号:
    9801262
  • 财政年份:
    1998
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory of Reductive P-adic Groups
数学科学:还原 P 进群的表示论
  • 批准号:
    9500970
  • 财政年份:
    1995
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Semi-simple Groups and Arithmetic Subgroups
数学科学:半单群和算术子群
  • 批准号:
    9204296
  • 财政年份:
    1992
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
  • 批准号:
    2401049
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
  • 批准号:
    2400089
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
  • 批准号:
    2416129
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
  • 批准号:
    2401184
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了