Operator Algebraic Structures and Their Applications
算子代数结构及其应用
基本信息
- 批准号:9801324
- 负责人:
- 金额:$ 45.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Effros/Popa/Takesaki The three PI's and their students will continue their investigations in operator algebra theory. Edward Effros is embarking on a major program of understanding non-commutative functional analysis in collaboration with Zhong-Jin Ruan, using the theory of "quantized" Banach spaces. Sorin Popa will be continuing his investigation of subfactor theory in both its analytic and combinatorial aspects. Masamichi Takesaki will be taking advantage of the enormous progress that he and his collaborators have made in finding the intrinsic underlying structure of von Neumann algebras to make further progress. This work has enabled him to formulate a paradigm for classification problems in mathematics that bypasses the non-classifiability theory of Mackey. It is only now becoming clear that the abstruse notions of quantum physics pondered by Bohr, Einstein, and Heisenberg in the early part of this century, will have profound effect on modern technology. In particular, we will be able to exploit the classifically inconceivable predictions of quantum mechanics to build new kinds of computers, measure physical quantities with unprecedented accuracy, and make new materials with remarkable properties. These possibilities were to some degree foreseen by John von Neumann, who invented the correct mathematical language for quantum mechanics. He was the first mathematician to realize that since mathematics is based on fundamentally mistaken ideas of geometry and matter arising from classical physics, it was incumbent on mathematicians to develop new forms of "quantized mathematics". For that purpose he introduced the area of operator algebras, which now constitutes one of the most exciting branches of modern mathematics. This subject has important applications to geometry, algebra, probability theory, and mathematical physics. The participants in this grant are pursuing some of the most exciting directions in this field. These include the exploration of quantized symmetry (Popa: subfactor theory), the quantized version of infinite dimensional analysis (Effros: operator spaces), and understanding the classification problems of operator algebra and its deep implications for such problems throughout mathematics (Takesaki: von Neumann algebras).
摘要Effros/Popa/Takesaki 三个PI的和他们的学生将继续他们的调查算子代数理论。 爱德华·埃弗罗斯正在着手与阮仲金合作,利用“量化”Banach空间理论来理解非交换泛函分析的主要计划。 索林波帕将继续他的调查子因子理论在其分析和组合方面。 Masamichi Takesaki将利用他和他的合作者在寻找冯诺依曼代数的内在基础结构方面取得的巨大进展,取得进一步的进展。 这项工作使他能够制定一个范式分类问题的数学绕过不可分类理论的麦基。 直到现在,人们才逐渐清楚,玻尔、爱因斯坦和海森堡在本世纪早期所思考的量子物理学的深奥概念将对现代技术产生深远的影响。 特别是,我们将能够利用量子力学经典的不可思议的预测来建造新型计算机,以前所未有的精度测量物理量,并制造具有显着特性的新材料。 约翰·冯·诺伊曼在某种程度上预见了这些可能性,他发明了量子力学的正确数学语言。 他是第一个数学家认识到,因为数学是基于从根本上错误的想法几何和问题所产生的经典物理学,这是义不容辞的数学家发展新形式的“量化数学”。 为此目的,他介绍了该地区的运营商代数,现在构成了一个最令人兴奋的分支现代数学。 这门学科在几何学、代数学、概率论和数学物理学中有重要的应用。 该资助的参与者正在追求这个领域中一些最令人兴奋的方向。 这些包括探索量化对称性(波帕:子因子理论),量化版本的无限维分析(Effros:运营商空间),并了解分类问题的运营商代数及其深刻的影响,这些问题在整个数学(竹崎:冯诺依曼代数)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masamichi Takesaki其他文献
The characteristic square of a factor and the cocycle conjugacy of discrete group actions on factors
- DOI:
10.1007/s002220050226 - 发表时间:
1998-04-24 - 期刊:
- 影响因子:3.600
- 作者:
Yoshikazu Katayama;Colin E. Sutherland;Masamichi Takesaki - 通讯作者:
Masamichi Takesaki
Group duality and the Kubo-Martin Schwinger condition. II
- DOI:
10.1007/bf02029140 - 发表时间:
1982-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Daniel Kastler;Masamichi Takesaki - 通讯作者:
Masamichi Takesaki
The topological structure of the unitary and automorphism groups of a factor
- DOI:
10.1007/bf02100051 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:2.600
- 作者:
Sorin Popa;Masamichi Takesaki - 通讯作者:
Masamichi Takesaki
Masamichi Takesaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masamichi Takesaki', 18)}}的其他基金
Non-commutative Analysis and Symmetry in Operator Algebra
算子代数中的非交换分析和对称性
- 批准号:
0100883 - 财政年份:2001
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Fifth West Coast Operator Algebra Seminar; Fall, 1996; British Columbia, Canada
数学科学:第五届西海岸算子代数研讨会;
- 批准号:
9632726 - 财政年份:1996
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantized Analysis
数学科学:量化分析
- 批准号:
9500882 - 财政年份:1995
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quantized Analysis
数学科学:量化分析
- 批准号:
9206984 - 财政年份:1992
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: West Coast Operator Algebra Seminar; October 26-27, 1991
数学科学:西海岸算子代数研讨会;
- 批准号:
9106187 - 财政年份:1991
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Operator Algebras and Their Applications
数学科学:算子代数及其应用
- 批准号:
8908281 - 财政年份:1989
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
US-United Kingdom Joint Seminar on Operator Algebras and Applications, University of Warwick, Coventry, England, July 20-25, 1987
美英算子代数及应用联合研讨会,英国考文垂华威大学,1987 年 7 月 20-25 日
- 批准号:
8611385 - 财政年份:1986
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic, Analytic and Geometric Aspects of Operator Algebras
数学科学:算子代数的代数、解析和几何方面
- 批准号:
8603223 - 财政年份:1986
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
8101589 - 财政年份:1981
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 45.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 45.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 45.8万 - 项目类别:
Continuing Grant
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 45.8万 - 项目类别:
Research Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 45.8万 - 项目类别:
Studentship
Application of noncommutative algebraic structures to cryptology
非交换代数结构在密码学中的应用
- 批准号:
22K03397 - 财政年份:2022
- 资助金额:
$ 45.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 45.8万 - 项目类别:
Standard Grant