Algebraic Structures in String Topology
弦拓扑中的代数结构
基本信息
- 批准号:2405405
- 负责人:
- 金额:$ 28.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to understand the general structure of string interactions in a background space, its significance in geometry and mathematical physics, and to carry out explicit computations using algebraic models. Interactions of strings, paths, and loops are ubiquitous throughout mathematics and science. These range from observable phenomena in fluid dynamics (vortex rings in a fluid coming together to become a new ring or self-intersecting and breaking apart into multiple rings) to patterns arising in areas of theoretical physics such as string theory and quantum field theory. String topology proposes a mathematical model to study these interactions in terms of operations defined by intersecting, reconnecting, and cutting strings (closed curves) evolving in time in a manifold. Giving a rigorous and complete description of the structure of string topology, which is one of the aims of the proposed project, will also provide solid foundations for physical theories. Furthermore, the physicially inspired theory of string topology turns out to inform theoretical questions in mathematics: probing a space through strings and studying how all possible interactions are organized also reveals intricate aspects of the background geometry. Building upon previous work of the PI, the project proposes to algebraicize string topology through tractable models obtained by decomposing, or discretizing, the underlying space into cells and using techniques from algebraic topology and homological algebra, two well developed active fields of pure mathematics. These models will be applicable to study a wide range of string interaction phenomena appearing in both pure and applied mathematics as well as in theoretical physics. The proposed project includes a broad educational component focused on fostering mathematical activity and access at multiple levels. This involves graduate student training, organization of summer workshops and conferences that bring together researchers from a wide variety of fields, and the support of periodic seminars at the PI’s institution. In more technical detail, this project aims to study chain-level string topology with a focus on operations that are sensitive to geometric structure beyond the homotopy type of the underlying manifold. In particular, the PI proposes to construct a homotopy coherent structure lifting the Goresky-Hingston loop coalgebra (and its S^1-symmetric Lie cobracket version) originally defined on the homology of the space of free loops on a manifold relative to the constant loops. The construction of such structure will use an appropriate refinement of Poincaré duality and intersection theory at the level of chains on a finely triangulated manifold together with the theory of algebraic models for loop spaces of non-simply connected manifolds developed in previous work of the PI using techniques from Hochschild homology theory and Koszul duality theory. These models will be transparent enough to reveal the precise geometric ingredients that are necessary to construct a coherent hierarchy of higher structures for string topology. This hierarchy of chain-level operations will provide a rich source of computable and potentially new manifold invariants. Connections with symplectic geometry, homological mirror symmetry, and the theory of quantization will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是了解背景空间中弦相互作用的一般结构,它在几何和数学物理中的意义,并使用代数模型进行显式计算。字符串、路径和循环的相互作用在数学和科学中无处不在。这些现象包括流体动力学中可观察到的现象(流体中的涡环聚集在一起成为一个新的环或自相交并分裂成多个环),以及弦理论和量子场论等理论物理领域中出现的模式。弦拓扑提出了一个数学模型来研究这些相互作用的操作定义的交叉,重新连接,切割字符串(封闭曲线)在流形上的时间演变。给出弦拓扑结构的严格和完整的描述,这是拟议项目的目标之一,也将为物理理论提供坚实的基础。此外,弦拓扑学的物理启发理论为数学中的理论问题提供了信息:通过弦探索空间,研究所有可能的相互作用是如何组织的,也揭示了背景几何的复杂方面。基于PI以前的工作,该项目提出通过将底层空间分解或离散化为单元并使用代数拓扑和同调代数(纯数学的两个发展良好的活跃领域)的技术获得易于处理的模型来代数化弦拓扑。这些模型将适用于研究出现在纯数学和应用数学以及理论物理中的广泛的弦相互作用现象。拟议的项目包括一个广泛的教育组成部分,重点是促进数学活动和多层次的访问。这包括研究生培训,组织夏季讲习班和会议,汇集来自各个领域的研究人员,并支持在PI的机构定期研讨会。在更多的技术细节中,该项目旨在研究链级弦拓扑,重点是对底层流形的同伦类型之外的几何结构敏感的操作。特别是,PI提出构造一个同伦相干结构,提升Goresky-Hingston loop余代数(及其S^1-对称李余括号版本),该余代数最初定义在流形上的自由回路空间相对于常数回路的同调上。这样的结构的建设将使用适当的完善庞加莱对偶和交叉理论的水平链上的一个精细的三角形流形与理论的代数模型的环路空间的非单连通流形在以前的工作中开发的PI使用技术从Hochschild同调理论和Koszul对偶理论。这些模型将是透明的,足以揭示精确的几何成分,这些成分是构建弦拓扑的更高结构的连贯层次所必需的。这种链级操作的层次结构将提供丰富的可计算和潜在的新流形不变量。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Rivera其他文献
The role of dietary arachidonic acid and docosahexaenoic acid in preventing the phenotype observed with highly unsaturated fatty acid deficiency
膳食花生四烯酸和二十二碳六烯酸在预防高度不饱和脂肪酸缺乏的表型中的作用
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Manuel Rivera - 通讯作者:
Manuel Rivera
Perceptions of service attributes in a religious theme site: an importance–satisfaction analysis
对宗教主题网站服务属性的看法:重要性-满意度分析
- DOI:
10.1080/17438730902822939 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Manuel Rivera;Amir Shani;D. Severt - 通讯作者:
D. Severt
Human agency shaping tourism competitiveness and quality of life in developing economies
- DOI:
10.1016/j.tmp.2017.03.002 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Marketa Kubickova;Robertico Croes;Manuel Rivera - 通讯作者:
Manuel Rivera
PERCUTANEOUS EPICARDIAL MAPPING AND ABLATION OF VENTRICULAR TACHYCARDIA: A SYSTEMATIC REVIEW OF SAFETY OUTCOMES
- DOI:
10.1016/s0735-1097(17)33735-x - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Rhanderson Cardoso;Manuel Rivera;Harold Rivner;Rodrigo Mendirichaga;Andre D'Avila - 通讯作者:
Andre D'Avila
THYROID DYSFUNCTION AS A PREDICTOR OF ADVERSE CARDIOVASCULAR OUTCOMES IN HEART FAILURE: A META-ANALYSIS
- DOI:
10.1016/s0735-1097(19)31488-3 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Amanda Fernandes;Gilson Fernandes;Leonardo Knijnik;Manuel Rivera;Rosario Colombo;Amit Badiye;Sandra Chaparro - 通讯作者:
Sandra Chaparro
Manuel Rivera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Rivera', 18)}}的其他基金
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
Algebraic Structures in Topology Conference, San Juan, Puerto Rico
拓扑中的代数结构会议,波多黎各圣胡安
- 批准号:
2200130 - 财政年份:2022
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
Algebraic Structures in Topology and Geometry
拓扑和几何中的代数结构
- 批准号:
2105544 - 财政年份:2021
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
相似海外基金
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2022
- 资助金额:
$ 28.89万 - 项目类别:
Subatomic Physics Envelope - Individual
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2021
- 资助金额:
$ 28.89万 - 项目类别:
Subatomic Physics Envelope - Individual
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2019
- 资助金额:
$ 28.89万 - 项目类别:
Subatomic Physics Envelope - Individual
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Subatomic Physics Envelope - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Analysis of upper and lower bounds on string processing problems via advanced data structures
通过高级数据结构分析字符串处理问题的上限和下限
- 批准号:
17H01697 - 财政年份:2017
- 资助金额:
$ 28.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2017
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2017
- 资助金额:
$ 28.89万 - 项目类别:
Subatomic Physics Envelope - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2016
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Geometry from Physics:Using string theory to uncover novel geometric structures and symmetries
物理学中的几何:利用弦理论揭示新颖的几何结构和对称性
- 批准号:
471918-2015 - 财政年份:2016
- 资助金额:
$ 28.89万 - 项目类别:
Postdoctoral Fellowships