Linear Systems of Plane Curves With Assigned Singularities
具有指定奇点的平面曲线线性系统
基本信息
- 批准号:9801465
- 负责人:
- 金额:$ 9.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Caporaso 9801465 The goal of this project is to solve the following classical conjecture in algebraic geometry: the linear system of plane curves of fixed degree having a given number of singularities at assigned general points in the plane has dimension equal to the expected value. Such an expected value can be computed naively, and the above problem has been an object of study since the beginning of this century. Work that addresses this question would lead to a better understanding of the geometry of moduli spaces parameterizing plane curves, which are basic objects of study both in classical and modern algebraic geometry. The PI expects that degeneration techniques can be successfully used to approach these issues; in fact modern tools (such as semistable reduction and deformation theory) make degeneration methods much more powerful today than they were ever in the past. There are many open problems regarding the geometry of curves on algebraic varieties, of which the one described here is an example. It often happens that breakthroughs on one of them shed light on others. This project is an example of this fact, as the approach to be used here contains ideas that were used by the PI to prove results in the context of enumerative algebraic geometry. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
Caporaso 9801465 本项目的目标是解决代数几何中的以下经典猜想:在平面上指定的一般点处具有给定数量奇点的固定次数的平面曲线的线性系统的维数等于期望值。这样的期望值可以简单地计算,并且从本世纪开始,上述问题一直是研究的对象。 解决这个问题的工作将导致更好地了解几何模空间参数化平面曲线,这是基本的研究对象,无论是在古典和现代代数几何。PI期望退化技术可以成功地用于解决这些问题;事实上,现代工具(如半稳定约简和变形理论)使退化方法比过去更加强大。关于代数簇上曲线的几何学有许多公开的问题,这里所描述的就是一个例子。经常发生的情况是,其中一个方面的突破会照亮其他方面。这个项目是这一事实的一个例子,因为这里使用的方法包含PI用来证明枚举代数几何背景下的结果的想法。 这是代数几何领域的研究。代数几何是现代数学中最古老的部分之一,但在过去的四分之一个世纪里,它已经有了革命性的发展。在其起源,它处理的数字,可以定义在平面上的最简单的方程,即多项式。如今,该领域不仅使用代数方法,还使用分析和拓扑学方法,相反,这些方法在这些领域以及物理学,理论计算机科学和机器人学中也得到了应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucia Caporaso其他文献
Hypertangency of plane curves and the algebraic exceptional set
平面曲线的超切线和代数例外集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lucia Caporaso;A. Turchet - 通讯作者:
A. Turchet
Mathematisches Forschungsinstitut Oberwolfach Moduli Spaces in Algebraic Geometry
Oberwolfach 数学研究所 代数几何中的模空间
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Organised By;D. Abramovich;Lucia Caporaso;Romain Farkas;Stefan Berlin;Kebekus - 通讯作者:
Kebekus
Naturality of Abel maps
- DOI:
10.1007/s00229-007-0083-5 - 发表时间:
2007-04-05 - 期刊:
- 影响因子:0.600
- 作者:
Lucia Caporaso - 通讯作者:
Lucia Caporaso
strongSuzuki–Miyaura Cross-Coupling of Amides by N–C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Clsub2/sub] Catalysts: Reaction Development, Scope, and Mechanism/strong
空气稳定、定义明确的[Pd(NHC)(硫化物)Cl₂]催化剂介导的酰胺通过 N–C 裂解的强 Suzuki–Miyaura 交叉偶联:反应开发、范围和机制
- DOI:
10.1021/acs.joc.3c00912 - 发表时间:
2023-08-04 - 期刊:
- 影响因子:3.600
- 作者:
Shiyi Yang;Xiang Yu;Yaxu Liu;Michele Tomasini;Lucia Caporaso;Albert Poater;Luigi Cavallo;Catherine S. J. Cazin;Steven P. Nolan;Michal Szostak - 通讯作者:
Michal Szostak
Indirect daylight oxidative degradation of polyethylene microplastics by a bio-waste modified TiOsub2/sub-based material
生物废料改性 TiO₂ 基材料对聚乙烯微塑料的间接日光氧化降解
- DOI:
10.1016/j.jhazmat.2023.132907 - 发表时间:
2024-02-05 - 期刊:
- 影响因子:11.300
- 作者:
Paola Amato;Marzia Fantauzzi;Filomena Sannino;Ida Ritacco;Giuseppe Santoriello;Matteo Farnesi Camellone;Claudio Imparato;Aurelio Bifulco;Giuseppe Vitiello;Lucia Caporaso;Antonella Rossi;Antonio Aronne - 通讯作者:
Antonio Aronne
Lucia Caporaso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucia Caporaso', 18)}}的其他基金
Mathematical Sciences: Kodaira Dimensions of Fiber Products and the Distribution of Rational Points
数学科学:纤维产品的小平维数和有理点的分布
- 批准号:
9505140 - 财政年份:1995
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: SHF: Rethinking the Control Plane for Chiplet-Based Heterogeneous Systems
职业:SHF:重新思考基于 Chiplet 的异构系统的控制平面
- 批准号:
2238608 - 财政年份:2023
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: LARGE: MAC-on-MAC: A Spectrum Orchestrating Control Plane for Coexisting Wireless Systems
合作研究:SWIFT:LARGE:MAC-on-MAC:共存无线系统的频谱编排控制平面
- 批准号:
2030122 - 财政年份:2021
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: LARGE: MAC-on-MAC: A Spectrum Orchestrating Control Plane for Coexisting Wireless Systems
合作研究:SWIFT:LARGE:MAC-on-MAC:共存无线系统的频谱编排控制平面
- 批准号:
2030134 - 财政年份:2021
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: LARGE: MAC-on-MAC: A Spectrum Orchestrating Control Plane for Coexisting Wireless Systems
合作研究:SWIFT:LARGE:MAC-on-MAC:共存无线系统的频谱编排控制平面
- 批准号:
2030063 - 财政年份:2021
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Novel semiconductor laser devices and systems featuring in-plane periodic optical nanostructures for quantum, biomedical, imaging and telecommunicatio
用于量子、生物医学、成像和电信的新型半导体激光器件和系统,具有面内周期性光学纳米结构
- 批准号:
1944303 - 财政年份:2017
- 资助金额:
$ 9.71万 - 项目类别:
Studentship
Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
- 批准号:
1501052 - 财政年份:2015
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
Collaborative Research: Micromachined In-Plane Resonator Arrays with Integrated Temperature Modulation: A Systems Approach to Liquid-Phase Chemical Sensing
合作研究:具有集成温度调制的微机械面内谐振器阵列:液相化学传感的系统方法
- 批准号:
1128554 - 财政年份:2011
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Collaborative Research: Micromachined In-Plane Resonator Arrays with Integrated Temperature Modulation: A Systems Approach to Liquid-Phase Chemical Sensing
合作研究:具有集成温度调制的微机械面内谐振器阵列:液相化学传感的系统方法
- 批准号:
1128992 - 财政年份:2011
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
A New Departure for Phase Plane Analysis in Continuous and Discrete Dynamical Systems
连续和离散动力系统相平面分析的新起点
- 批准号:
19540182 - 财政年份:2007
- 资助金额:
$ 9.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wide-field submillimeter spectroscopic imaging systems for Galactic plane surveys
用于银河平面勘测的宽视场亚毫米光谱成像系统
- 批准号:
0602290 - 财政年份:2006
- 资助金额:
$ 9.71万 - 项目类别:
Fellowship Award