An Abstract Formulation of Wavelets
小波的抽象公式
基本信息
- 批准号:9801658
- 负责人:
- 金额:$ 10.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractBaggettRecently, a kind of internal fine structure of wavelets has been discovered. That is, each wavelethas associated to it a "multiplicity function" that appears to carry some information about theredundancy, in the frequency domain, of the wavelet. Such redundancies should lead to morereliable reconstructions of signals from their wavelet transforms. This research focuses on thetheoretical nature of these multiplicity functions. That is, we will study the properties of thismultiplicity function, try to determine exactly which kinds of functions occur in this way, andattempt to classify wavelets according to their multiplicity functions.The way in which an unknown signal (radio wave, seismic shock, astronomic vibration,etc.) is typically analyzed is by numerically comparing it to a set of fixed standard signals.For instance, the signal can be reproduced (relatively accurately) from these numbers; it can be stored in a computer and re-examined later; or it can be designated as a "new" standard itself. The new idea that comes from Wavelet Theory is that this important set of fixed standards can be described in terms of a single standard, together with several expansions and shifts of it. This simplifies greatly the technology for making the comparisons with an arbitrary signal. Various of these single fixed standards (wavelets) are known, but their comparative virtues in signal analysis are still being developed. This research project deals with a newly discovered property of wavelets. Each one has associated to it a notion of "redundancy" of frequencies. It is thought that these redundancies might be an important feature of the wavelet, one that could further simplify and improve the accuracy and reliability of signal analysis.
最近,人们发现了小波的一种内在精细结构。也就是说,每个波都有一个“多重性函数”,它似乎携带了一些关于子波在频域中的不稳定性的信息。这样的冗余应该会导致从信号的小波变换中更可靠地重建信号。本研究的重点是这些多元函数的理论性质。也就是说,我们将研究这种多重函数的性质,试图准确地确定哪类函数以这种方式出现,并尝试根据它们的多重函数对小波进行分类。未知信号(无线电波、地震、天文振动等)通常是通过将其与一组固定的标准信号进行数字比较来分析的。例如,可以从这些数字中(相对准确地)再现信号;可以将其存储在计算机中并在以后重新检查;或者可以将其本身指定为“新的”标准。来自小波理论的新思想是,这套重要的固定标准可以用一个标准来描述,加上它的几个扩展和转变。这大大简化了与任意信号进行比较的技术。这些单一的固定标准(小波)中的各种都是已知的,但它们在信号分析中的相对优点仍在开发中。这项研究项目是关于小波的一个新发现的性质。每一个都与频率的“冗余”概念相关联。人们认为,这些冗余可能是小波的一个重要特征,它可以进一步简化和提高信号分析的精度和可靠性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Baggett其他文献
Lawrence Baggett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Baggett', 18)}}的其他基金
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
- 批准号:
0139366 - 财政年份:2002
- 资助金额:
$ 10.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: An Abstract Theory of Wavelets and Multi-Resolution Analyses
数学科学:小波和多分辨率分析的抽象理论
- 批准号:
9401180 - 财政年份:1994
- 资助金额:
$ 10.4万 - 项目类别:
Standard Grant
Mathematical Sciences: An Abstract Theory of Wavelets
数学科学:小波的抽象理论
- 批准号:
9201720 - 财政年份:1992
- 资助金额:
$ 10.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Representation of the Discrete Heisenberg Group, Continued Fraction Expansions, and Cocycles of an Irrational Rotation
数学科学:离散海森堡群的表示、连分数展开式和无理旋转的余循环
- 批准号:
8600753 - 财政年份:1986
- 资助金额:
$ 10.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Schroedinger Operators and Representation Theory: A Conference
数学科学:薛定谔算子和表示论:会议
- 批准号:
8520796 - 财政年份:1986
- 资助金额:
$ 10.4万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 10.4万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 10.4万 - 项目类别:
Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
- 批准号:
2323611 - 财政年份:2024
- 资助金额:
$ 10.4万 - 项目类别:
Continuing Grant
A novel formulation for combating biofilms and improving orthopaedic surgical wound healing
一种对抗生物膜和改善骨科手术伤口愈合的新型配方
- 批准号:
2905595 - 财政年份:2024
- 资助金额:
$ 10.4万 - 项目类别:
Studentship
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
- 批准号:
23K01515 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Soft Matter and Formulation for Industrial Innovation
工业创新的软物质和配方
- 批准号:
2887677 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Studentship
SBIR Phase II: Formulation of a mRNA-Based Therapy for CTLN1 by Inverse Flash NanoPrecipitation
SBIR II 期:通过反向闪速纳米沉淀制定基于 mRNA 的 CTLN1 疗法
- 批准号:
2233286 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Cooperative Agreement
CAREER: Consistent Continuum Formulation and Robust Numerical Modeling of Non-Isothermal Phase Changing Multiphase Flows
职业:非等温相变多相流的一致连续体公式和鲁棒数值模拟
- 批准号:
2234387 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Continuing Grant
Development of brain-targeted intranasal formulation consisting of NSAIDs encapsulated in micelles using ionic liquids
开发由使用离子液体封装在胶束中的非甾体抗炎药组成的脑靶向鼻内制剂
- 批准号:
23K14395 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Formulation of a Methodology for the Construction and Public Access of Contemporary Art Collecting Archive: Through a Survey of Art Gallery's Old Materials
当代艺术收藏档案建设与公共获取方法论的制定:通过对美术馆旧资料的调查
- 批准号:
23K18640 - 财政年份:2023
- 资助金额:
$ 10.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up