Low-Volume Questions for Hyperbolic 3-Manifolds
双曲 3 流形的小容量问题
基本信息
- 批准号:9801736
- 负责人:
- 金额:$ 6.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9801736 Meyerhoff The 3-dimensional Universe in which we live has very nice geometric properties. For 2000 years, it was believed that the geometry involved was Euclidean geometry. But, at the beginning of the 19th century, C. F. Gauss and N. Lobachevskii independently speculated that the Universe might have a non-Euclidean geometric structure (this geometry is obtained by negating Euclid's fifth postulate, and it is generally called "hyperbolic geometry"). Further, they took measurements to determine if their speculations were correct. Gauss's measurements came from surveys on the earth, while Lobachevskii's measurements were astronomical and used the parallax for the star Sirius. Their measurements were inconclusive, but this year, a variety of astronomical studies have provided substantial evidence that the Universe has a hyperbolic geometric structure. Just as Gauss and Lobachevskii speculated, the Universe is a hyperbolic 3-dimensional object, technically, a hyperbolic 3-manifold. There are many, many different types of hyperbolic 3-manifolds. Which one of these types is our Universe? Answering this question is a daunting task, but there appears to be one significant simplification: some theoretical and esthetic information indicates that if geometric measurements could be made, it would turn out---after a re-scaling related to the expansion of the Universe---that the Universe is "small" in size, that is, it is a hyperbolic 3-manifold of low volume. Thus, we want to understand all hyperbolic 3-manifolds of low volume. This is a hard problem, and for many years progress was slow, but recent research has provided powerful new tools for attacking the problem. Some of the tools involve the use of rigorous computer programs to analyze parameter spaces and to study configurations of natural geometric objects in hyperbolic space. This project will use these tools and develop new ones to lead us towards the goal of definitively identifying the low-volume hyperbolic 3-manifolds. Coupling this theoretical information with data from the planned MAP (microwave anisotropy probe) space project could lead to the determination of precisely which hyperbolic 3-manifold the Universe is. ***
9801736迈耶霍夫我们生活的三维宇宙有非常好的几何性质。2000年来,人们一直认为所涉及的几何是欧几里得几何。但是,在19世纪初,C.F.Gauss和N.Lobachevskii独立地推测,宇宙可能具有非欧几里得几何结构(这种几何结构是通过否定欧几里得第五公设而获得的,通常被称为“双曲几何”)。此外,他们还进行了测量,以确定他们的推测是否正确。Gauss的测量来自对地球的测量,而Lobachevskii的测量是天文测量,并使用了天狼星的视差。他们的测量结果没有定论,但今年,各种天文学研究提供了大量证据,证明宇宙具有双曲线几何结构。正如Gauss和Lobachevskii推测的那样,宇宙是一个双曲的三维物体,从技术上讲,是一个双曲的三维流形。有很多很多不同类型的双曲三维流形。这些类型中哪一种是我们的宇宙?回答这个问题是一项艰巨的任务,但似乎有一个显著的简化:一些理论和美学信息表明,如果可以进行几何测量,那么-在与宇宙膨胀相关的重新缩放之后-宇宙是“小”的,也就是说,它是一个小体积的双曲三维流形。因此,我们想要了解所有低体积的双曲3-流形。这是一个棘手的问题,多年来进展缓慢,但最近的研究为解决这个问题提供了强大的新工具。其中一些工具涉及使用严格的计算机程序来分析参数空间和研究双曲空间中自然几何对象的形状。这个项目将使用这些工具并开发新的工具来引导我们朝着最终识别低体积双曲3-流形的目标前进。将这些理论信息与计划中的MAP(微波各向异性探测器)空间项目的数据结合起来,可以准确地确定宇宙是哪种双曲三维流形。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
G. Robert Meyerhoff其他文献
G. Robert Meyerhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('G. Robert Meyerhoff', 18)}}的其他基金
Hyperbolic 3-Manifold Invariants and Applications
双曲 3 流形不变量及应用
- 批准号:
1308642 - 财政年份:2013
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
FRG: Understanding Low-Volume Hyperbolic 3-Manifolds
FRG:了解小体积双曲 3 流形
- 批准号:
0553787 - 财政年份:2006
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Invariants of Hyperbolic 3-Manifolds and Applications
双曲3-流形的不变量及其应用
- 批准号:
0204311 - 财政年份:2002
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Mathematical Sciences: Solid Tubes in Hyperbolic 3-Manifolds and Applications
数学科学:双曲 3 流形中的实心管及其应用
- 批准号:
9626561 - 财政年份:1996
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Mathematical Sciences: New Invariants for Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的新不变量
- 批准号:
9296022 - 财政年份:1991
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Mathematical Sciences: New Invariants for Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的新不变量
- 批准号:
9008592 - 财政年份:1990
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的不变量
- 批准号:
8807152 - 财政年份:1988
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for Hyperbolic-3-Manifolds
数学科学:双曲 3 流形的不变量
- 批准号:
8602308 - 财政年份:1986
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
The Chern-Simons Invariant For Hyperbolic 3-Manifolds (Mathematics)
双曲 3 流形的 Chern-Simons 不变量(数学)
- 批准号:
8201827 - 财政年份:1982
- 资助金额:
$ 6.51万 - 项目类别:
Standard Grant
相似海外基金
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
- 批准号:
BB/Y51391X/1 - 财政年份:2024
- 资助金额:
$ 6.51万 - 项目类别:
Research Grant
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
- 批准号:
2335105 - 财政年份:2024
- 资助金额:
$ 6.51万 - 项目类别:
Cooperative Agreement
Enhancements to design and testing of Body Aspect's breast volume measurement software
Body Aspect 乳房体积测量软件的设计和测试得到增强
- 批准号:
10074432 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Collaborative R&D
Functional design and realisation plan for efficient high volume recycling bin.
高效大容量回收箱的功能设计与实现方案。
- 批准号:
10075210 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Collaborative R&D
Redeveloping Xampla’s plant-based and biodegradable resin (TRL4-6) to access low cost, high-volume plastic film markets
重新开发 Xampla 的植物基可生物降解树脂 (TRL4-6),以进入低成本、大批量的塑料薄膜市场
- 批准号:
10062008 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Collaborative R&D
Road traffic speed and volume profiles of collision hotspots in the City of Toronto
多伦多市碰撞热点的道路交通速度和流量概况
- 批准号:
489155 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Operating Grants
A machine learning approach to constraining ice volume and potential loss in High Mountain Asia
限制亚洲高山冰量和潜在损失的机器学习方法
- 批准号:
2890090 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Studentship
SBIR Phase II: Development of an industrial flow meter for low-volume dispensing
SBIR 第二阶段:开发用于小容量点胶的工业流量计
- 批准号:
2322302 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Cooperative Agreement
Development of a method for measuring the volume of nanolitre droplets in microchannels using phase retrieval holography
开发一种使用相检索全息术测量微通道中纳升液滴体积的方法
- 批准号:
23K03658 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deploying Intracortical Electrode Arrays to Record and Stimulate in a Tissue Volume
部署皮质内电极阵列以在组织体积中进行记录和刺激
- 批准号:
10636123 - 财政年份:2023
- 资助金额:
$ 6.51万 - 项目类别: