Dynamical Systems, Stochastic Approximation and Applications
动力系统、随机逼近及其应用
基本信息
- 批准号:9802182
- 负责人:
- 金额:$ 11.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802182HirschThis project will study dynamical systems enjoying a strong comparison principle, and their applications to evolutionary stochastic approximation processes. The structure of invariant subsets will be investigated, especially attractors and attractor-free sets. New means of ascertaining the existence, stability and periods of periodic and subharmonic trajectories of monotone systems of ordinary and partial differential equations will be obtained. These results will be applied to stochastic processes in which long-term behavior of sample paths is closely related to asymptotic behavior of an associated deterministic vector field that points in the direction of expected changes in state vectors. In some cases the dynamics of the vector field is simple enough that one can derived precise information on clustering of sample paths as certain parameters (e.g., population, in epidemic models) becomes large. Specific applications include models of spread of infection disease, price adjustment, and repeated adaptive games.For many real world phenomena it is useful to have precise mathematical models capturing a few important features. In order to manage the spread of an infectious disease, for example, it is important to know whether it is better to budget for increasing cure rates, reducing contact rates, or isolating the most infected subgroups. Mathematical models are used to give precise theoretical answers to such questions; if the model has been validated by observation or experiment, specific practical steps can be taken. This project will investigate, on a theoretical level, mathematicalsystems of this type. The technical results apply also to other situations. One of these is price adjustment and stability of markets; it will be shown that prices can be expected to stabilize when goods are similar, price changes are small and sellers have good estimates of the intrinsic marginal demand for their own products. Another is to repeated games where information is uncertain; such systems are often used to model bargaining between individuals, corporations or governments. The project will show that certain types of long-term strategies lead to convergence of behavior.
9802182 Hirsch该项目将研究享受强比较原理的动力系统,以及它们在进化随机逼近过程中的应用。不变子集的结构将被研究,特别是吸引子和吸引子自由集。 将获得确定单调常微分方程和偏微分方程系统的周期和次调和轨迹的存在性、稳定性和周期的新方法。 这些结果将被应用到随机过程中的长期行为的样本路径是密切相关的渐近行为相关联的确定性向量场,在预期的状态向量的变化的方向点。 在某些情况下,矢量场的动态足够简单,以至于可以导出有关样本路径聚类的精确信息作为某些参数(例如,流行病模型中的人口)变得很大。 具体的应用包括传染病的传播模型、价格调整和重复的自适应博弈。对于许多真实的世界现象,具有捕捉一些重要特征的精确数学模型是有用的。 例如,为了控制传染病的传播,重要的是要知道预算是用于提高治愈率、降低接触率还是用于隔离感染最严重的亚群。 数学模型被用来对这些问题给出精确的理论答案;如果模型已经被观察或实验所证实,就可以采取具体的实际步骤。本项目将在理论层面上研究这类系统。 技术成果也适用于其他情况。 其中之一是价格调整和市场稳定;它将表明,当商品相似、价格变化小、销售者对其产品的内在边际需求有很好的估计时,价格可望稳定下来。另一种是重复博弈,其中信息是不确定的;这种系统通常用于模拟个人,公司或政府之间的讨价还价。 该项目将表明某些类型的长期策略会导致行为趋同。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morris Hirsch其他文献
Morris Hirsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morris Hirsch', 18)}}的其他基金
Mathematical Sciences: Dynamical Systems and Applications
数学科学:动力系统及其应用
- 批准号:
9424382 - 财政年份:1995
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems and Neural Networks
数学科学:动力系统和神经网络
- 批准号:
9113250 - 财政年份:1992
- 资助金额:
$ 11.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems and Neural Networks
数学科学:动力系统和神经网络
- 批准号:
8807813 - 财政年份:1988
- 资助金额:
$ 11.25万 - 项目类别:
Continuing Grant
Acquisition of Mathematical Sciences Research Equipment
数学科学研究设备购置
- 批准号:
8206102 - 财政年份:1982
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2306769 - 财政年份:2023
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
Exit Time from the perspective of random dynamical systems and its application in stochastic resonance
随机动力系统视角下的退出时间及其在随机共振中的应用
- 批准号:
2752048 - 财政年份:2022
- 资助金额:
$ 11.25万 - 项目类别:
Studentship
Dynamical Approaches for Some Complex Stochastic Systems
一些复杂随机系统的动力学方法
- 批准号:
2205972 - 财政年份:2022
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 11.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Negotiated Planning for Stochastic Control of Dynamical Systems
协作研究:动力系统随机控制的协商规划
- 批准号:
2105631 - 财政年份:2021
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
Investigation of the mathematical structure of resilience in aircraft operation using stochastic dynamical systems theory
使用随机动力系统理论研究飞机运行中弹性的数学结构
- 批准号:
21K14350 - 财政年份:2021
- 资助金额:
$ 11.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Negotiated Planning for Stochastic Control of Dynamical Systems
协作研究:动力系统随机控制的协商规划
- 批准号:
2105502 - 财政年份:2021
- 资助金额:
$ 11.25万 - 项目类别:
Standard Grant
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
- 批准号:
1847144 - 财政年份:2019
- 资助金额:
$ 11.25万 - 项目类别:
Continuing Grant
Deterministic and Stochastic Perturbations of Dynamical Systems
动力系统的确定性和随机扰动
- 批准号:
RGPIN-2015-04076 - 财政年份:2019
- 资助金额:
$ 11.25万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




