Algebraic and Geometric Topology
代数和几何拓扑
基本信息
- 批准号:9802386
- 负责人:
- 金额:$ 29.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802386Dwyer The investigators are working on a number of problems from algebraicand geometric topology. Dwyer is extending earlier research on thehomotopy theory of topological groups and on the relationship betweenalgebraic K-theory and number theory. Taylor is studying smooth4-manifolds, looking into some algebraic results at the heart ofgeometric topology and developing applications of controlled topologyto stratified spaces. Williams is concentrating on Reimann-RochTheorems in differential topology, in particular, by generalizing thesetheorems to related theories and finding applications of them tostratified spaces and to curvature questions. The researchers in this project are concerned with geometry, bothwith the behavior of visible shapes and the more mysterious qualitiesof higher dimensional configurations. They work on developingtechniques for making spatial calculations, and also on findinginstances in which simple geometrical ideas can clarify other kinds ofmathematics. Some of the specific questions the investigators studyare quite complex, but the fundamental goal of the field of topologyin which they are involved goes back to the Greeks: it is tounderstand better the relationship between number and shape, betweenquantities that can be manipulated by calculation and the moreelusive spatial forms (of all dimensions) that arise repeatedly inmathematics and other sciences.***
9802386Dwyer 研究人员正在研究代数和几何拓扑中的许多问题。 Dwyer 正在扩展拓扑群同伦理论以及代数 K 理论与数论之间关系的早期研究。 泰勒正在研究平滑 4 流形,研究几何拓扑核心的一些代数结果,并开发受控拓扑在分层空间中的应用。 威廉姆斯专注于微分拓扑中的赖曼-罗赫定理,特别是通过将这些定理推广到相关理论并找到它们在分层空间和曲率问题上的应用。 该项目的研究人员关注几何学,包括可见形状的行为和高维结构的更神秘的品质。 他们致力于开发空间计算技术,并寻找简单的几何思想可以阐明其他类型数学的实例。 研究人员研究的一些具体问题相当复杂,但他们所涉及的拓扑学领域的基本目标可以追溯到希腊人:更好地理解数字和形状之间的关系,可以通过计算操纵的数量之间的关系,以及在数学和其他科学中反复出现的更难以捉摸的空间形式(所有维度)之间的关系。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Dwyer其他文献
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
- DOI:
10.1007/bf01389225 - 发表时间:
1982-10-01 - 期刊:
- 影响因子:3.600
- 作者:
William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason - 通讯作者:
Robert Thomason
William Dwyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Dwyer', 18)}}的其他基金
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0967061 - 财政年份:2010
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Travel Grant for International Conference on Algebraic Topology
国际代数拓扑会议旅费补助金
- 批准号:
0735448 - 财政年份:2007
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic and Geometric Topology
数学科学:代数和几何拓扑
- 批准号:
9505024 - 财政年份:1995
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Scientific Computing Research Equipment
数学科学:科学计算研究设备
- 批准号:
8722573 - 财政年份:1988
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Algebraic and Geometric Topology In Dimensions Three and Four
三维和四维的代数和几何拓扑
- 批准号:
2267124 - 财政年份:2019
- 资助金额:
$ 29.48万 - 项目类别:
Studentship
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
- 批准号:
1510178 - 财政年份:2015
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
CAREER: Connections between algebraic and geometric invariants in low-dimensional topology
职业:低维拓扑中代数和几何不变量之间的联系
- 批准号:
1151671 - 财政年份:2012
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2011
- 资助金额:
$ 29.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2010
- 资助金额:
$ 29.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2009
- 资助金额:
$ 29.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2008
- 资助金额:
$ 29.48万 - 项目类别:
Discovery Grants Program - Individual