New Problems in Homotopy, K-Theory, and Representation Theory
同伦、K 理论和表示论中的新问题
基本信息
- 批准号:9802493
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802493Kuhn Professor Kuhn has a long record of developing both homotopy- theoretic and representation-theoretic methods to solve problems in both areas. More recently, some of these methods have led him also in algebraic K-theoretic directions, and his research and techniques are being used extensively by others. The largest part of this project is directed towards connecting classic loopspace theory with the more recent developments of `S-module' and `Goodwillie calculus' technology, with the focus of these efforts aimed towards establishing new conjectures concerning well known and much studied topological objects: Eilenberg-MacLane spaces, Hopf invariants, and combinatorial function space models. A second part of the work is part of the rapid development being made now in algebraic K-theory and generic representation theory over finite fields by Professor Kuhn, K-theorists Eric Friedlander and Andrei Suslin, and their collaborators. Finally, Professor Kuhn and his students are continuing work on topological realization problems, using both new homotopy theoretic and algebraic techniques, following the direction of earlier work by Professor Kuhn and Lionel Schwartz of Paris. Homotopy theory, K-theory, and representation theory aremathematical subjects in which one is trying to discover, andultimately classify, fundamental ``building blocks'' of various sortsof mathematical structure. (This is quite analogous to a chemist'sstudying simple molecular configurations, and how these can beassembled in more complex ways.) Homotopy is concerned withdeformations of geometric objects such as higher dimensional surfaces.Representation theory is concerned with the algebraic symmetries ofmore rigid and discrete objects such as configurations of lines andplanes. Finally K-theory is a hybrid of the two. Professor Kuhn isstudying intriguing new connections relating these subjects, using avariety of state-of-the-art algebraic and homotopy theoretic tools,many developed by himself.***
库恩教授在发展同伦论和表示论方法来解决这两个领域的问题方面有着长期的记录。最近,这些方法中的一些方法也将他引向了代数K理论的方向,他的研究和技术正被其他人广泛使用。这个项目的最大部分是将经典的循环空间理论与最新的S-模和‘Goodwillie演算’技术的发展联系起来,这些努力的重点是建立关于著名和广泛研究的拓扑对象的新猜想:Eilenberg-MacLane空间、Hopf不变量和组合函数空间模型。这项工作的第二部分是由Kuhn教授、K-理论家Eric Friedlander和Andrei Suslin以及他们的合作者在有限域上的代数K-理论和一般表示理论方面取得的快速发展的一部分。最后,Kuhn教授和他的学生继续使用新的同伦理论和代数技术,沿着Kuhn教授和巴黎的Lionel Schwartz早期工作的方向,继续研究拓扑实现问题。同伦理论、K理论和表示理论是人们试图发现并最终归类各种数学结构的基本“积木”的数学学科。(这非常类似于化学家研究简单的分子构型,以及这些构型如何以更复杂的方式组装。)同伦研究的是几何对象的变形,如高维曲面。表象理论研究的是更多刚性和离散对象的代数对称性,如线和面的配置。最后,K-理论是两者的混合体。库恩教授正在使用各种最先进的代数和同伦理论工具,研究与这些学科相关的有趣的新联系,其中许多工具都是他自己开发的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Kuhn其他文献
Nicholas Kuhn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Kuhn', 18)}}的其他基金
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0967649 - 财政年份:2010
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Problems in Homotopy Theory and Group Cohomology
同伦论和群上同调中的问题
- 批准号:
0604206 - 财政年份:2006
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Problems in Homotopy, K-theory, and Representation Theory
同伦、K 理论和表示论中的问题
- 批准号:
0100710 - 财政年份:2001
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Homotopy Theory, K-theory, and Representation Theory
数学科学:同伦理论、K 理论和表示论中的问题
- 批准号:
9423719 - 财政年份:1995
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Groups and Complex Oriented Theories in Homotopy
数学科学:同伦中的有限群和复向理论
- 批准号:
8802411 - 财政年份:1988
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Finite Groups and Periodic Theories in Stable Homotopy
稳定同伦中的有限群和周期理论
- 批准号:
8701089 - 财政年份:1987
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Spacelike Resolutions of Spectra (Mathematics)
光谱的空间分辨率(数学)
- 批准号:
8201652 - 财政年份:1982
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
相似海外基金
Rationality problems and homotopy theory for varieties
有理性问题和簇的同伦理论
- 批准号:
0900813 - 财政年份:2009
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Applying the homotopy analysis method to non-linear problems in fluid dynamics
同伦分析方法在流体动力学非线性问题中的应用
- 批准号:
347460-2008 - 财政年份:2008
- 资助金额:
$ 8.4万 - 项目类别:
Postgraduate Scholarships - Master's
Applications of homotopy algebras to geometry and its deformation problems
同伦代数在几何及其变形问题中的应用
- 批准号:
19740038 - 财政年份:2007
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Applying the homotopy analysis method to non-linear problems in fluid dynamics
同伦分析方法在流体动力学非线性问题中的应用
- 批准号:
347460-2007 - 财政年份:2007
- 资助金额:
$ 8.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Applying the homotopy analysis method to non-linear problems in fluid dynamics
同伦分析方法在流体动力学非线性问题中的应用
- 批准号:
347460-2007 - 财政年份:2007
- 资助金额:
$ 8.4万 - 项目类别:
Postgraduate Scholarships - Master's
Problems in Homotopy Theory and Group Cohomology
同伦论和群上同调中的问题
- 批准号:
0604206 - 财政年份:2006
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Some global problems in homotopy theory
同伦论中的一些全球性问题
- 批准号:
238498-2001 - 财政年份:2005
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
Some global problems in homotopy theory
同伦论中的一些全球性问题
- 批准号:
238498-2001 - 财政年份:2003
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
Some global problems in homotopy theory
同伦论中的一些全球性问题
- 批准号:
238498-2001 - 财政年份:2002
- 资助金额:
$ 8.4万 - 项目类别:
Discovery Grants Program - Individual
Problems in Homotopy, K-theory, and Representation Theory
同伦、K 理论和表示论中的问题
- 批准号:
0100710 - 财政年份:2001
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant