Mathematical Sciences: Problems in Homotopy Theory, K-theory, and Representation Theory
数学科学:同伦理论、K 理论和表示论中的问题
基本信息
- 批准号:9423719
- 负责人:
- 金额:$ 6.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9423719 Kuhn Homotopy theory and representation theory have quite distinct origins, with the former being motivated by the desire to understand the global structure of geometric objects such as manifolds, and the latter evolving out of the study of how algebraic structures act as symmetries on vector spaces. Professor Kuhn is continuing his study of the common ground between these subjects, as typified by his development of "generic representation theory," which was originally inspired by work by topologists on the Steenrod algebra, but which seems to offer new powerful tools for understanding completely representation theoretic topics such as the modular representations of the finite general linear groups and the MacLane homology of algebraic K-theorists. Among the specific questions being studied are ones dealing with homotopy "at a large prime," topological realization questions, and the relation between stable K-theory and MacLane homology. Both homotopy theory and representation theory are mathematical subjects in which one is trying to discover, and ultimately classify, fundamental "building blocks" of structure: homotopy dealing with deformations of geometric objects such as higher dimensional surfaces, and representation theory being concerned with symmetries of discrete algebraic objects such as configurations of lines and planes. Professor Kuhn is continuing his study of some of the common ground between these, using algebraic tools developed by him that were inspired by homotopy theoretic experiences. ***
小行星9423719 同伦理论和表示论有着截然不同的起源,前者是出于理解几何对象(如流形)的全局结构的愿望,后者是从研究代数结构如何作为向量空间上的对称性发展而来的。 库恩教授正在继续研究这些学科之间的共同点,这一点以他的“一般表示理论”的发展为代表,“一般表示理论”最初是受到拓扑学家在Steenrod代数上的工作的启发,但它似乎提供了新的强大的工具,为理解完全表示理论的主题,如有限的一般线性群的模表示和MacLane同调的代数K理论家 其中正在研究的具体问题是那些处理同伦“在一个大素数”,拓扑实现问题,以及稳定的K理论和麦克莱恩同源之间的关系。 同伦理论和表示论都是数学学科,其中一个试图发现并最终分类结构的基本“积木”:同伦处理几何对象的变形,如高维表面,表示论关注离散代数对象的对称性,如线和平面的配置。 库恩教授正在继续他的研究之间的一些共同点,这些,使用代数工具开发的启发,他的同伦理论的经验。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Kuhn其他文献
Nicholas Kuhn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Kuhn', 18)}}的其他基金
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
- 批准号:
0967649 - 财政年份:2010
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
Problems in Homotopy Theory and Group Cohomology
同伦论和群上同调中的问题
- 批准号:
0604206 - 财政年份:2006
- 资助金额:
$ 6.84万 - 项目类别:
Continuing Grant
Problems in Homotopy, K-theory, and Representation Theory
同伦、K 理论和表示论中的问题
- 批准号:
0100710 - 财政年份:2001
- 资助金额:
$ 6.84万 - 项目类别:
Continuing Grant
New Problems in Homotopy, K-Theory, and Representation Theory
同伦、K 理论和表示论中的新问题
- 批准号:
9802493 - 财政年份:1998
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Groups and Complex Oriented Theories in Homotopy
数学科学:同伦中的有限群和复向理论
- 批准号:
8802411 - 财政年份:1988
- 资助金额:
$ 6.84万 - 项目类别:
Continuing Grant
Finite Groups and Periodic Theories in Stable Homotopy
稳定同伦中的有限群和周期理论
- 批准号:
8701089 - 财政年份:1987
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
Spacelike Resolutions of Spectra (Mathematics)
光谱的空间分辨率(数学)
- 批准号:
8201652 - 财政年份:1982
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2018
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2017
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2016
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2015
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical Modelling of Various Problems arising in the Biomedical Sciences
生物医学科学中出现的各种问题的数学建模
- 批准号:
RGPIN-2014-04772 - 财政年份:2014
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant