Cobordism of Configuration Spaces and Its Applications
配置空间的共边及其应用
基本信息
- 批准号:9802616
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802616 Morava In previous work, the author showed that Witten's tau-function for topological gravity in two dimensions has a homotopy-theoretic interpretation as a kind of topological field theory taking values in a category of modules over a ring-spectrum. This ring-spectrum is a large-genus completion of the moduli space of stable algebraic curves; it is constructed by homotopy-theoretic methods from spaces of configurations of smooth points on such curves. Its cohomology has many features reminiscent of a vertex operator algebra, which is in turn connected to the theory of symmetric functions. The methods of cobordism theory have not been systematically applied to the study of configuration spaces, but questions in a variety of areas suggest that this merits investigation. It is particularly important to extend the results mentioned above to topological gravity coupled to a sigma-model, to encompass quantum cohomology along the lines suggested by T. Eguchi and his school. The interest of physicists in two-dimensional gravity has shed more light on the topology of the moduli space of Riemann surfaces than all previous research in this very classical subject combined, but their work answers questions that are not, at first sight, what a mathematician might want to ask, and it has been difficult to understand these new results in terms of the traditional mathematical approach to this subject. It is becoming increasingly clear that configuration spaces and cobordism techniques are at the geometric heart of the physicists' constructions, and that their intersection lies in a rich part of algebraic topology that has till now escaped systematic study. In physics, it is always taken to be an encouraging sign when `experimental' applications suggest new `theoretical' questions for investigation; this is what seems to be happening here in mathematics. ***
小行星9802616 在以前的工作中,作者证明了二维拓扑引力的维滕τ-函数具有同伦论的解释,它是一种取值于环谱上模范畴的拓扑场论。 这个环谱是稳定代数曲线的模空间的一个大亏格完备;它是由同伦理论方法从这种曲线上的光滑点的配置空间构造的。 它的上同调有许多让人联想到顶点算子代数的特征,而顶点算子代数又与对称函数理论有关。 配边理论的方法还没有被系统地应用到构形空间的研究中,但是在各个领域的问题表明这是值得研究的。 特别重要的是将上述结果推广到耦合到σ模型的拓扑引力,以包含T.江口和他的学校。 物理学家对二维引力的兴趣,使人们对黎曼曲面模空间的拓扑结构有了更多的了解,这比以前在这一非常经典的学科中的所有研究加起来还要多,但是他们的工作回答了一些问题,乍一看,这些问题并不是数学家想要问的,而且用传统的数学方法来理解这些新的结果是很困难的。 越来越清楚的是,位形空间和配边技术是物理学家构造的几何核心,它们的交叉点存在于代数拓扑学的丰富部分,而这些部分迄今尚未得到系统的研究。 在物理学中,当“实验”应用提出新的“理论”问题供研究时,总是被认为是一个令人鼓舞的迹象;这似乎就是数学中正在发生的事情。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Morava其他文献
On gauge theories of mass
- DOI:
10.1016/j.geomphys.2011.11.014 - 发表时间:
2010-01 - 期刊:
- 影响因子:1.5
- 作者:
Jack Morava - 通讯作者:
Jack Morava
Some measure theory on stacks of graphs
图栈的一些测度理论
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jack Morava - 通讯作者:
Jack Morava
String Orientations of Simplicial Homology Manifolds
单纯同调流形的串方向
- DOI:
10.4310/atmp.2010.v14.n3.a7 - 发表时间:
2008 - 期刊:
- 影响因子:1.5
- 作者:
Jack Morava - 通讯作者:
Jack Morava
Cobordism of symplectic manifolds and asymptotic expansions
辛流形和渐近展开的协边
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Jack Morava - 通讯作者:
Jack Morava
Jack Morava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Morava', 18)}}的其他基金
Mid-Atlantic Topology Symposium: New Directions
大西洋中部拓扑研讨会:新方向
- 批准号:
1619569 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Homotopy-Theoretic Aspects of the Theory of Motives
动机理论的同伦理论方面
- 批准号:
0805531 - 财政年份:2009
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Applications of homotopy theory to 4D geometry, number theory, and physics
同伦理论在 4D 几何、数论和物理学中的应用
- 批准号:
0406461 - 财政年份:2004
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Research: Primes and Knots
美日合作研究:素数和纽
- 批准号:
0124616 - 财政年份:2002
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
U.S.-Japan Joint Seminar: Quantum Geometry in Dimensions 2 and 4
美日联合研讨会:2维和4维量子几何
- 批准号:
0089657 - 财政年份:2001
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Floer Homotopy, Kontsevich-Gromov- Witten Theory, and Quantum Cohomology
数学科学:Floer 同伦、Kontsevich-Gromov-Witten 理论和量子上同调
- 批准号:
9504234 - 财政年份:1995
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Two-dimensional Topological Field Theories and Complex Cobordism
数学科学:二维拓扑场论和复配边
- 批准号:
9119954 - 财政年份:1992
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Geometry and Quantum Field Theory; March 26-29, 1992
数学科学:几何与量子场论会议;
- 批准号:
9200557 - 财政年份:1992
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似海外基金
RUI: Configuration Spaces of Flexible Polyhedral Surfaces
RUI:柔性多面体曲面的配置空间
- 批准号:
2347000 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
RUI: Configuration Spaces of Flexible Polyhedral Surfaces
RUI:柔性多面体曲面的配置空间
- 批准号:
2305250 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
MPS-Ascend: Understanding Khovanov Homology Through Configuration Spaces
MPS-Ascend:通过配置空间理解 Khovanov 同调
- 批准号:
2212736 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship Award
New Perspectives on Configuration Spaces
配置空间的新视角
- 批准号:
1906174 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
CRII:IIS:Topology Aware Configuration Spaces
CRII:IIS:拓扑感知配置空间
- 批准号:
1850319 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
RUI: Configuration Spaces of Rigid Origami
RUI:刚性折纸的配置空间
- 批准号:
1906202 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Assuring the quality of design descriptions through the use of design configuration spaces
通过使用设计配置空间确保设计描述的质量
- 批准号:
EP/S016406/1 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Research Grant
New Perspectives on Configuration Spaces
配置空间的新视角
- 批准号:
1943761 - 财政年份:2019
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Anabelian geometry of hyperbolic curves and configuration spaces
双曲曲线和配置空间的阿贝尔几何
- 批准号:
18J12027 - 财政年份:2018
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
INSPIRE: Assessing feasible regions of configuration spaces for macromolecular crystals
INSPIRE:评估大分子晶体构型空间的可行区域
- 批准号:
1640970 - 财政年份:2016
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant