Mid-Atlantic Topology Symposium: New Directions

大西洋中部拓扑研讨会:新方向

基本信息

  • 批准号:
    1619569
  • 负责人:
  • 金额:
    $ 1.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

The Mathematics Department at Johns Hopkins University is hosting a "Mid-Atlantic Topology Symposium: New Directions" at the Homewood campus in Baltimore, Maryland, Saturday-Sunday, March 12-13 2016. This meeting is inspired by a similar conference which took place in Spring 2015 at the University of Virginia. The PIs intend to establish a tradition of such meetings. Algebraic topology, geometry, and category theory are in the midst of a generational shift of language, techniques and paradigms, rooted in new ideas about higher homotopy-theoretic structures in geometry, physics, category theory, and data analysis. These fields are in ferment, with a forefront defined by a younger generation of researchers who bring new ideas from higher algebra to classical areas of geometry, physics, and applied mathematics. This conference is intended to help clarify the shifting boundaries and intersections in these closely related fields. Recent developments in computer science, physics, and big data are changing profoundly our notions of what constitutes geometry; in response, ideas from homotopy and category theory have provided new algebraic methods for (re)organizing our understanding of these questions, and how to approach them.The conference will focus on a developing new global language for both geometry and algebra, with connections to fields such as the following:1. arithmetic geometry (new approaches to motives, for example, via motivic homotopy theory; new techniques in K-theory via Hochschild and cyclic homology; homotopy-theoretic methods in automorphic forms, with applications to classical homotopy theory)2. geometric quantum field theory, for example, through various cobordism hypotheses (via chiral homology and related not-so-commutative ring spectra)3. category theory (e.g., through Voevodsky's univalent foundations project and related work on homotopy type theory in computer science, and involving foundational work in and applications of higher category theoryDemographic and intellectual developments in these areas have brought a diverse population of new researchers into the field, and the organizers hope that the conference will foster and encourage this development. The roster of speakers emphasizes junior researchers and diversity, but makes no compromises with the strength of the work under discussion. The speakers exemplify ground-breaking work in new directions, which points the way toward a new synthesis of algebra and geometry. This conference is an opportunity to expose graduate students and new researchers to these developments, and could have significant impact on their careers.A list of speakers and other details can be found at the conference websitehttp://www.math.jhu.edu/matc/
约翰霍普金斯大学数学系将于2016年3月12日至13日在马里兰州巴尔的摩的霍姆伍德校区举办“中大西洋拓扑研讨会:新方向”。这次会议的灵感来自于2015年春季在弗吉尼亚大学举行的一次类似会议。PI打算建立这种会议的传统。 代数拓扑学、几何学和范畴论正处于语言、技术和范式的世代转变之中,这些转变植根于几何学、物理学、范畴论和数据分析中关于更高同伦理论结构的新思想。这些领域处于动荡之中,年轻一代的研究人员将新的想法从高等代数带到几何,物理和应用数学的经典领域。本次会议旨在帮助澄清这些密切相关的领域中不断变化的边界和交叉点。计算机科学、物理学和大数据的最新发展正在深刻地改变我们对几何构成的概念;作为回应,同伦和范畴论的思想为(重新)组织我们对这些问题的理解以及如何处理这些问题提供了新的代数方法。会议将重点关注开发一种新的几何和代数全球语言,与以下领域有关:1.算术几何(新的方法动机,例如,通过motivic同伦理论;新技术在K理论通过Hochschild和循环同调;同伦理论方法自守形式,与应用到经典同伦理论)2.几何量子场论,例如,通过各种配边假设(通过手征同调和相关的非对易环谱)3.范畴理论(例如,通过Voevodsky的univalent基金会项目和计算机科学中同伦类型理论的相关工作,并涉及基础工作和高等范畴理论的应用,这些领域的人口和智力发展带来了新的研究人员进入该领域的多样化人口,组织者希望会议将促进和鼓励这种发展。发言者名单强调初级研究人员和多样性,但不妥协所讨论的工作的强度。演讲者在新的方向上开创性的工作,这指向了一个新的综合代数和几何的方式。这次会议是一个机会,让研究生和新的研究人员接触到这些发展,并可能对他们的职业生涯产生重大影响。发言者名单和其他细节可以在会议网站上找到http:www.math.jhu.edu/matc/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Morava其他文献

On gauge theories of mass
  • DOI:
    10.1016/j.geomphys.2011.11.014
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Jack Morava
  • 通讯作者:
    Jack Morava
Forms ofK-theory
K理论的形式
  • DOI:
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Morava
  • 通讯作者:
    Jack Morava
Some measure theory on stacks of graphs
图栈的一些测度理论
String Orientations of Simplicial Homology Manifolds
单纯同调流形的串方向
Cobordism of symplectic manifolds and asymptotic expansions
辛流形和渐近展开的协边

Jack Morava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Morava', 18)}}的其他基金

Homotopy-Theoretic Aspects of the Theory of Motives
动机理论的同伦理论方面
  • 批准号:
    0805531
  • 财政年份:
    2009
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Applications of homotopy theory to 4D geometry, number theory, and physics
同伦理论在 4D 几何、数论和物理学中的应用
  • 批准号:
    0406461
  • 财政年份:
    2004
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
U.S.-Japan Cooperative Research: Primes and Knots
美日合作研究:素数和纽
  • 批准号:
    0124616
  • 财政年份:
    2002
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
TQFTs in Spectra
Spectra 中的 TQFT
  • 批准号:
    0116288
  • 财政年份:
    2001
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
U.S.-Japan Joint Seminar: Quantum Geometry in Dimensions 2 and 4
美日联合研讨会:2维和4维量子几何
  • 批准号:
    0089657
  • 财政年份:
    2001
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Cobordism of Configuration Spaces and Its Applications
配置空间的共边及其应用
  • 批准号:
    9802616
  • 财政年份:
    1998
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Geometry of Algebraic Cocycles
代数余循环的几何
  • 批准号:
    9803141
  • 财政年份:
    1998
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Floer Homotopy, Kontsevich-Gromov- Witten Theory, and Quantum Cohomology
数学科学:Floer 同伦、Kontsevich-Gromov-Witten 理论和量子上同调
  • 批准号:
    9504234
  • 财政年份:
    1995
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Two-dimensional Topological Field Theories and Complex Cobordism
数学科学:二维拓扑场论和复配边
  • 批准号:
    9119954
  • 财政年份:
    1992
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Geometry and Quantum Field Theory; March 26-29, 1992
数学科学:几何与量子场论会议;
  • 批准号:
    9200557
  • 财政年份:
    1992
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331199
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331200
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Continuing Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23K25946
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a mucosally-delivered and active salmon louse vaccine for Atlantic salmon aquaculture
开发用于大西洋鲑鱼水产养殖的粘膜递送活性鲑鱼虱疫苗
  • 批准号:
    BB/Y006534/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Research Grant
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
  • 批准号:
    NE/X013758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Research Grant
REDUCING BYCATCH OF THREATENED MEGAFAUNA IN THE EAST CENTRAL ATLANTIC
减少中大西洋东部地区受威胁巨型动物的兼捕
  • 批准号:
    10099456
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    EU-Funded
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
  • 批准号:
    NE/X014193/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Research Grant
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
  • 批准号:
    NE/X014576/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Research Grant
Monitoring and elimination of bycatch of endangered and conserved species in the NE and high seas Atlantic region.
监测和消除东北部和公海大西洋地区濒危和保护物种的兼捕。
  • 批准号:
    10108866
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    EU-Funded
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
  • 批准号:
    2343204
  • 财政年份:
    2024
  • 资助金额:
    $ 1.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了