Research in Nonlinear Problems Arising in Mechanics
力学非线性问题的研究
基本信息
- 批准号:9803223
- 负责人:
- 金额:$ 7.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The scientific tools used by Slemrod in his research on findingmulti-scale models for constitutive relations for gases, fluids, and granular materials are kinetic theories for these materials and singular perturbation limits. These singular perturbation limits allow him to recover models on large space and time scales. However the linking of the large and small scales in unified models will be accomplished by a new technique developed by Slemrod and motivated by the procedure used by physicists in the study of critical phenomena. Slemrod calls the method" generalized rational approximation". It provides a stable way of extrapolating from small scale to large scale models of materials. In the study of the dynamics of liquids, gases, and granular materials it is important to have good mathematical models to aid in the prediction of physical phenomena. It is also important to have these models to be valid on a whole range of length and time scales. For example the motion of the atmosphere (a rarefied gas) far away from a plane or a space shuttle re-entering the earth's atmosphere uses a large scale model different than that used to model the small scale dynamics of a shock layer near the plane or shuttle. However for computational efficiency one unified model valid on a large range of length and time scales is desirable. Slemrod in his research will formulate a method for finding such models for fluids, gases, and granular materials.
Slemrod在研究气体、流体和颗粒材料的本构关系的多尺度模型时使用的科学工具是这些材料的动力学理论 奇异摄动极限这些奇异摄动极限使他能够在大的空间和时间尺度上恢复模型。然而,统一模型中大尺度和小尺度的联系将通过Slemrod开发的新技术来完成,并受到物理学家在研究临界现象时所使用的程序的激励。Slemrod称这种方法为“广义有理逼近”。它提供了一个稳定的方式外推从小尺度到大尺度的材料模型。在研究液体、气体和颗粒物质的动力学时,重要的是要有良好的数学模型来帮助预测物理现象。同样重要的是,这些模型要在整个长度和时间尺度范围内有效。例如,远离飞机或航天飞机重新进入地球大气层的大气(稀薄气体)的运动使用的大尺度模型不同于用于模拟飞机或航天飞机附近激波层的小尺度动力学的模型。 然而,为了计算效率,一个统一的模型有效的大范围的长度和时间尺度是可取的。 Slemrod在他的研究中将制定一种方法来寻找流体,气体和颗粒材料的这种模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marshall Slemrod其他文献
Asymptotic behavior of periodic dynamical systems on banach spaces
- DOI:
10.1007/bf02415724 - 发表时间:
1970-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Marshall Slemrod - 通讯作者:
Marshall Slemrod
Stability of spherical isothermal liquid-vapor interfaces
- DOI:
10.1007/bf00987223 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:2.100
- 作者:
Henri Gouin;Marshall Slemrod - 通讯作者:
Marshall Slemrod
One-dimensional structured phase transformations under prescribed loads
- DOI:
10.1007/bf00041988 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Jack Carr;Morton E. Gurtin;Marshall Slemrod - 通讯作者:
Marshall Slemrod
An energy stability method for simple fluids
- DOI:
10.1007/bf00276175 - 发表时间:
1978-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Marshall Slemrod - 通讯作者:
Marshall Slemrod
On the decay rate of the Gauss curvature for isometric immersions
- DOI:
10.1007/s00574-016-0136-z - 发表时间:
2016-03-19 - 期刊:
- 影响因子:0.900
- 作者:
Cleopatra Christoforou;Marshall Slemrod - 通讯作者:
Marshall Slemrod
Marshall Slemrod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marshall Slemrod', 18)}}的其他基金
Research on Nonlinear Partial Differential Equations of Compressible Fluid Mechanics
可压缩流体力学非线性偏微分方程研究
- 批准号:
0647554 - 财政年份:2007
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0243722 - 财政年份:2003
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
L^1 Stability of Hyperbolic Coservation Laws with Geometrical Sources and Kinetic Equations
具有几何源和动力学方程的双曲守恒定律的 L^1 稳定性
- 批准号:
0203858 - 财政年份:2002
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Research on Plasma Sheaths: An Interdisciplinary Mathematical-Experimental Program
等离子体鞘研究:跨学科数学实验项目
- 批准号:
0071463 - 财政年份:2000
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Travel Support for Fifth International Workshopon Mathematical Aspects of Fluid and Plasma Dynamics
第五届流体与等离子体动力学数学方面国际研讨会的差旅支持
- 批准号:
9731084 - 财政年份:1998
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
- 批准号:
9531845 - 财政年份:1996
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
U.S. China Joint Research: Research in Relaxation Models for Phase Transitions
中美联合研究:相变弛豫模型研究
- 批准号:
9601376 - 财政年份:1996
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
- 批准号:
9406295 - 财政年份:1994
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Dynamic Problems Arising in Mechanics and Control
数学科学:力学和控制中出现的动态问题的研究
- 批准号:
9006945 - 财政年份:1991
- 资助金额:
$ 7.67万 - 项目类别:
Continuing Grant
US-France Cooperative Research: Conservation Laws in Continuum Mechanics
美法合作研究:连续介质力学守恒定律
- 批准号:
8914473 - 财政年份:1990
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
2403552 - 财政年份:2023
- 资助金额:
$ 7.67万 - 项目类别:
Continuing Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1812927 - 财政年份:2018
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
- 批准号:
18K11177 - 财政年份:2018
- 资助金额:
$ 7.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1812695 - 财政年份:2018
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
- 批准号:
1813480 - 财政年份:2018
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
1723066 - 财政年份:2017
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
- 批准号:
1723191 - 财政年份:2017
- 资助金额:
$ 7.67万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
- 批准号:
1115817 - 财政年份:2011
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Solvers for Nonlinear Eigenvalue Problems and Applications
协作研究:非线性特征值问题的高效求解器及其应用
- 批准号:
1115834 - 财政年份:2011
- 资助金额:
$ 7.67万 - 项目类别:
Standard Grant
Research on initial and boundary value problems, and space-time estimates for nonlinear partial differential equations
非线性偏微分方程的初值和边值问题以及时空估计研究
- 批准号:
23684004 - 财政年份:2011
- 资助金额:
$ 7.67万 - 项目类别:
Grant-in-Aid for Young Scientists (A)