Research on Nonlinear Partial Differential Equations of Compressible Fluid Mechanics

可压缩流体力学非线性偏微分方程研究

基本信息

  • 批准号:
    0647554
  • 负责人:
  • 金额:
    $ 13.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Slemrod will continue his research into conservation laws of mixed hyperbolic- elliptic type arising in continuum mechanics and especially compressible gas dynamics. The classical example of such flows occurs in transonic gas dynamics for flight near the speed of sound. Slemrod is developing methods for proving existence of solutions to the relevant system of partial differential equations in various flow geometries. A surprising feature of his approach is that it also leads to a new approach for proving existence of solutions to the Gauss-Codazzi system describing the problem of isometric embedding of a two dimensional Riemannian manifold in three dimensional Euclidean space with Gauss curvature having both positive and negative sign.The implications of this research are quite striking. First of all the methods given provide a new way for engineers to solve problems of transonic flight on computers. Secondly the geometry problem while of interest in its own right in mathematics also occurs in problems arising in the structure of thin shells and and fiber re-enforced materials. Again the research will provide engineers new tools for solving such problems on computers.
Slemrod将继续他的研究到守恒定律的混合双曲椭圆型所产生的连续介质力学,特别是可压缩气体动力学。这种流动的经典例子发生在接近音速飞行的跨音速气体动力学中。Slemrod正在开发各种流动几何形状的偏微分方程相关系统的解的存在性证明方法。一个令人惊讶的特点,他的做法是,它也导致了一个新的方法来证明存在的解决方案的高斯-Codazzi系统描述的问题等距嵌入的二维黎曼流形在三维欧氏空间与高斯曲率有正负sign. Implications这项研究是相当惊人的。首先,为工程技术人员在计算机上解决跨音速飞行问题提供了一种新的途径。其次,几何问题虽然在数学中有其自身的意义,但也出现在薄壳和纤维增强材料结构中出现的问题中。这项研究将再次为工程师提供在计算机上解决此类问题的新工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marshall Slemrod其他文献

Asymptotic behavior of periodic dynamical systems on banach spaces
Stability of spherical isothermal liquid-vapor interfaces
  • DOI:
    10.1007/bf00987223
  • 发表时间:
    1995-06-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Henri Gouin;Marshall Slemrod
  • 通讯作者:
    Marshall Slemrod
One-dimensional structured phase transformations under prescribed loads
  • DOI:
    10.1007/bf00041988
  • 发表时间:
    1985-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Jack Carr;Morton E. Gurtin;Marshall Slemrod
  • 通讯作者:
    Marshall Slemrod
An energy stability method for simple fluids
Self-similar fluid-dynamic limits for the Broadwell system

Marshall Slemrod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marshall Slemrod', 18)}}的其他基金

FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0243722
  • 财政年份:
    2003
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
L^1 Stability of Hyperbolic Coservation Laws with Geometrical Sources and Kinetic Equations
具有几何源和动力学方程的双曲守恒定律的 L^1 稳定性
  • 批准号:
    0203858
  • 财政年份:
    2002
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Research on Plasma Sheaths: An Interdisciplinary Mathematical-Experimental Program
等离子体鞘研究:跨学科数学实验项目
  • 批准号:
    0071463
  • 财政年份:
    2000
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Research in Nonlinear Problems Arising in Mechanics
力学非线性问题的研究
  • 批准号:
    9803223
  • 财政年份:
    1998
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Travel Support for Fifth International Workshopon Mathematical Aspects of Fluid and Plasma Dynamics
第五届流体与等离子体动力学数学方面国际研讨会的差旅支持
  • 批准号:
    9731084
  • 财政年份:
    1998
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
  • 批准号:
    9531845
  • 财政年份:
    1996
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
U.S. China Joint Research: Research in Relaxation Models for Phase Transitions
中美联合研究:相变弛豫模型研究
  • 批准号:
    9601376
  • 财政年份:
    1996
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Nonlinear Problems Arising in Mechanics
数学科学:力学中非线性问题的研究
  • 批准号:
    9406295
  • 财政年份:
    1994
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Dynamic Problems Arising in Mechanics and Control
数学科学:力学和控制中出现的动态问题的研究
  • 批准号:
    9006945
  • 财政年份:
    1991
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Conservation Laws in Continuum Mechanics
美法合作研究:连续介质力学守恒定律
  • 批准号:
    8914473
  • 财政年份:
    1990
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055072
  • 财政年份:
    2021
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1800852
  • 财政年份:
    2018
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1764403
  • 财政年份:
    2018
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616450
  • 财政年份:
    2016
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616981
  • 财政年份:
    2016
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了